Computed tomography image-based study for understanding the impact of electrode microstructure on lithium ion battery performance

基于计算机断层扫描图像的研究,用于了解电极微观结构对锂离子电池性能的影响

基本信息

  • 批准号:
    1335850
  • 负责人:
  • 金额:
    $ 29.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

PI: Zhu, LikunProposal Number: 1335850Institution: Indiana UniversityTitle: Computed tomography image-based study for understanding the impact of electrode microstructure on lithium ion battery performanceExtensive research has been conducted to develop advanced lithium ion battery (LIB) technologies to meet the demands of the ground transportation industry for LIBs with higher energy and power densities, lower cost, and safer operation. In addition to the development of advanced materials for the anode, cathode, and electrolyte, the structure of the electrodes at the micro- and nano-scales also plays a critical role in determining the performance of a LIB because the electrode?s composite matrix must be designed to provide both electron and lithium ion transportation, which eventually affects the LIB?s voltage, specific capacity, and discharge/charge rate. Currently, a fundamental understanding of the impact of an electrode?s microstructure on LIB performance is still lacking due to the inhomogeneity, complexity, and three-dimensional (3D) nature of the electrode?s microstructure. In this study, a novel approach is proposed to gain greater understanding of the microstructure of the electrode and its impact on the LIB?s physical and electrochemical performances when using liquid electrolytes as well as solid electrolytes (all-solid LIBs). The knowledge gained in this study is expected to help identify the optimal conditions of the composite electrode?s components and microstructure that will yield compact and safe LIBs with high energy and power densities.This research project takes a unique, interdisciplinary approach using experimental and theoretical analysis tools from the areas of electrochemistry, nanotechnology, transmission x-ray microscopy, material science, and numerical modeling. This work is expected to establish the engineering and scientific foundation for safe and high power/energy density LIBs. To achieve such an objective, the research efforts will first focus on the fundamental understanding of the porous microstructure of the composite electrode and its impact on the electrochemical performance of liquid electrolyte LIBs, followed by exploration into the impact of the electrode?s microstructure on all-solid LIB performances. X-ray nano-computed tomography (nano-CT) with sub-100 nm resolution will be employed to obtain the 3D microstructure of the LIB electrodes. For the first time, synchrotron x-ray nano-CT will be attempted to perform microstructural characterization of the composite electrode and to identify the particle/particle interface in all-solid LIBs. Both liquid electrolyte and all-solid LIB cells with finely tuned microstructure will be designed, fabricated, and characterized in the PIs? labs. A rich array of knowledge will be obtained through systematic experiments regarding the effects of various factors in the LIB electrodes. A comprehensive mathematical model and simulation framework based on the finite volume method will be established to reveal the physical and electrochemical processes in the electrode. The experimental and numerical results will be used to establish the correlations between the LIB?s performance and the electrode microstructure.The successful implementation of this research would directly facilitate the improvement of current LIBs that use liquid electrolytes and the development of next generation all-solid LIBs. The scientific and engineering knowledge gained from this project will improve battery capability allowing for the widespread use of environmentally sustainable energy sources, especially in ground transportation. Graduate and undergraduate students will gain critical hands-on research experience through this project. Summer camps will provide local high school students and K-12 teachers a unique opportunity to explore the interdisciplinary fields of advanced battery technologies and renewable energy.
PI:Zhu, Likun 提案编号:1335850 机构:印第安纳大学 题目:基于计算机断层扫描图像的研究,了解电极微观结构对锂离子电池性能的影响 为了开发先进的锂离子电池(LIB)技术,以满足锂离子电池的需求,进行了广泛的研究。锂离子电池的地面运输行业具有更高的能量和功率密度、更低的成本和更安全的运行。除了开发用于阳极、阴极和电解质的先进材料外,微米和纳米尺度的电极结构也在决定锂离子电池的性能方面发挥着关键作用,因为电极的复合基体必须设计用于提供电子和锂离子传输,最终影响锂离子电池的电压、比容量和放电/充电速率。目前,由于电极微观结构的不均匀性、复杂性和三维 (3D) 性质,仍然缺乏对电极微观结构对锂离子电池性能影响的基本了解。在这项研究中,提出了一种新方法,以更好地了解电极的微观结构及其在使用液体电解质和固体电解质(全固体LIB)时对LIB物理和电化学性能的影响。这项研究中获得的知识预计将有助于确定复合电极组件和微观结构的最佳条件,从而产生具有高能量和功率密度的紧凑且安全的LIB。该研究项目采用了独特的跨学科方法,利用实验和理论来自电化学、纳米技术、透射 X 射线显微镜、材料科学和数值建模领域的分析工具。这项工作有望为安全、高功率/能量密度的锂离子电池奠定工程和科学基础。为了实现这一目标,研究工作将首先集中于对复合电极的多孔微观结构及其对液体电解质LIB电化学性能的影响的基本了解,然后探索电极的微观结构对所有性能的影响。 -可靠的LIB性能。将采用分辨率低于 100 nm 的 X 射线纳米计算机断层扫描 (nano-CT) 来获取 LIB 电极的 3D 微观结构。将首次尝试使用同步加速器 X 射线纳米 CT 来执行复合电极的微观结构表征并识别全固体 LIB 中的颗粒/颗粒界面。具有精细调整微观结构的液体电解质和全固体锂离子电池将在 PI 中进行设计、制造和表征?实验室。通过系统实验,可以获得有关LIB电极中各种因素影响的丰富知识。将建立基于有限体积法的综合数学模型和仿真框架,以揭示电极中的物理和电化学过程。实验和数值结果将用于建立LIB性能与电极微观结构之间的相关性。这项研究的成功实施将直接促进当前使用液体电解质的LIB的改进以及下一代全固体LIB的开发LIB。从该项目中获得的科学和工程知识将提高电池性能,从而实现环境可持续能源的广泛使用,特别是在地面交通中。研究生和本科生将通过该项目获得重要的实践研究经验。夏令营将为当地高中生和 K-12 教师提供探索先进电池技术和可再生能源跨学科领域的独特机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Likun Zhu其他文献

Gaussian process-based prognostics of lithium-ion batteries and design optimization of cathode active materials
基于高斯过程的锂离子电池预测和正极活性材料的设计优化
  • DOI:
    10.1016/j.jpowsour.2022.231026
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    H. Valladares;Tianyi Li;Likun Zhu;H. El;A. Hashem;A. Abdel;A. Tovar
  • 通讯作者:
    A. Tovar
Operando Investigation of Energy Storage Material by FIB-SEM System
利用 FIB-SEM 系统对储能材料进行操作研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Xinwei Zhou;Likun Zhu;Yuzi Liu
  • 通讯作者:
    Yuzi Liu
Blade-Type Reaction Front in Micrometer-sized Germanium Particles during Lithiation.
锂化过程中微米级锗颗粒的叶片式反应前沿。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Xinwei Zhou;Tianyi Li;Yi Cui;M. Meyerson;J. Weeks;C. Mullins;Yang Jin;Ho;Yuzi Liu;Likun Zhu
  • 通讯作者:
    Likun Zhu
Stress- and Interface-Compatible Red Phosphorus Anode for High-Energy and Durable Sodium-Ion Batteries
用于高能耐用钠离子电池的应力和界面兼容红磷阳极
  • DOI:
    10.1021/acsenergylett.0c02650
  • 发表时间:
    2021-01-15
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Xiang Liu;B. Xiao;Amine Daali;Xinwei Zhou;Zhou Yu;Xiang Li;Yuzi Liu;Liang Yin;Zhenzhen Yang;Chen Zhao;Likun Zhu;Yang Ren;Lei Cheng;Shabbir Ahmed;Zonghai Chen;X. Li;Gui‐Liang Xu;K. Amine
  • 通讯作者:
    K. Amine
Integrated micro fuel cell with on-demand hydrogen production and passive control MEMS
具有按需制氢和被动控制 MEMS 的集成微型燃料电池
  • DOI:
    10.1007/s10404-011-0916-0
  • 发表时间:
    2011-12-02
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    V. Swaminathan;Likun Zhu;B. Gurau;R. Masel;M. Shannon
  • 通讯作者:
    M. Shannon

Likun Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Likun Zhu', 18)}}的其他基金

Collaborative Research: Fundamental understanding of interface dynamics in solid electrolyte batteries with liquid metal anode
合作研究:对液态金属阳极固体电解质电池界面动力学的基本了解
  • 批准号:
    2323474
  • 财政年份:
    2023
  • 资助金额:
    $ 29.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of chalcogenide-doped high capacity lithium-ion battery anode materials during cycling using in situ imaging
合作研究:利用原位成像研究硫属化物掺杂高容量锂离子电池负极材料在循环过程中的动力学
  • 批准号:
    1603847
  • 财政年份:
    2016
  • 资助金额:
    $ 29.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-circulating, self-regulating microreactor for on-chip gas generation from liquid reactants
合作研究:用于从液体反应物产生片上气体的自循环、自调节微反应器
  • 批准号:
    1264739
  • 财政年份:
    2013
  • 资助金额:
    $ 29.1万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于X射线断层扫描和3D图像分析的污泥干燥强化技术机理研究
  • 批准号:
    51911530259
  • 批准年份:
    2019
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于OCT影像数据的慢性青光眼早期辅助诊断关键技术研究
  • 批准号:
    61801263
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于结构与动态联合先验的PET心肌灌注直接4D参数成像方法
  • 批准号:
    81871437
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
基于机器学习的全角膜OCT图像于圆锥角膜早期预警性诊断和预后判断模型研究
  • 批准号:
    81800877
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
用于脑动脉瘤壁力学性能评价的光学相干弹性成像技术研究
  • 批准号:
    11602166
  • 批准年份:
    2016
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

High Accuracy Image Reconstruction Using Microwave Measurements from Bio-Matched Antennas and Deep Learning: A Synthesized X-ray Computed Tomography Approach
使用生物匹配天线和深度学习的微波测量进行高精度图像重建:一种合成 X 射线计算机断层扫描方法
  • 批准号:
    2244882
  • 财政年份:
    2023
  • 资助金额:
    $ 29.1万
  • 项目类别:
    Standard Grant
Improving Prognostication for Traumatic Brain Injury
改善创伤性脑损伤的预后
  • 批准号:
    10643695
  • 财政年份:
    2023
  • 资助金额:
    $ 29.1万
  • 项目类别:
Predictive Markers for Longitudinal TMJ Integrity
纵向颞下颌关节完整性的预测标记
  • 批准号:
    10648171
  • 财政年份:
    2023
  • 资助金额:
    $ 29.1万
  • 项目类别:
Pre-clinical Bruker Albira Si PET/SPECT/CT imaging system
临床前 Bruker Albira Si PET/SPECT/CT 成像系统
  • 批准号:
    10633022
  • 财政年份:
    2023
  • 资助金额:
    $ 29.1万
  • 项目类别:
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
  • 批准号:
    10884028
  • 财政年份:
    2023
  • 资助金额:
    $ 29.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了