Collaborative Research: Fundamental understanding of interface dynamics in solid electrolyte batteries with liquid metal anode

合作研究:对液态金属阳极固体电解质电池界面动力学的基本了解

基本信息

  • 批准号:
    2323474
  • 负责人:
  • 金额:
    $ 27.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Solid-state lithium-ion batteries (LIBs) present a safer alternative to their commercially available counterparts that utilize liquid electrolytes, due to the substantial safety risks associated with solvent leakage and flammability. Such batteries could even support smaller and more powerful battery packs by diminishing the necessity for extra safety features. However, despite the benefits of these highly ionic conductive solid electrolytes, achieving comparable specific capacity, rate capability, and cycle life to that of liquid electrolyte LIBs remains challenging. Research indicates a major obstacle being inadequate interfacing between solid electrolytes and solid electrodes. Contrarily, the liquid-solid interface in liquid electrolytes permits full electrode infiltration, fostering comprehensive lithium-ion transport across the surface of active material particles. To leverage the benefits of the liquid-solid interface in solid-state batteries, the research team proposes a transition from the solid-solid interface to a liquid-solid interface. This could be achieved by replacing the solid electrode with a liquid metal electrode within solid-state LIBs. During the processes of lithium-ion insertion and removal, both the electrode-electrolyte interface and the interior of the liquid metal particle experience continuous alterations due to the shift between liquid and solid states. It is essential to understand these dynamic changes to fully investigate the potential of liquid metal solid electrolyte LIBs. The objective of this project is to gain a fundamental understanding of the interface dynamics between the liquid metal anode and the solid electrolyte during lithium-ion insertion and removal processes. The project will cultivate a diverse and inclusive team, encompassing graduate students, undergraduate students, precollege students, and K-12 teachers, with special emphasis on encouraging the participation of underrepresented populations. The project aims to provide interdisciplinary training to students, bridging the gap between theoretical understanding and experimentation.In this project, the team proposes an innovative approach to study a novel solid electrolyte LIB, the first to utilize a liquid metal electrode and a solid electrolyte, forming a liquid-solid interface at room temperature. Their objective is to understand how the transition between this liquid-solid interface and the solid-solid interface occurs during lithium-ion insertion and removal processes. Insight gained from this investigation will foster the development of new techniques that incorporate liquid metal electrodes in solid electrolyte batteries. The team will utilize in situ and operando focused ion beam-scanning electron microscopy (FIB-SEM) to analyze dynamic changes in morphology and monitor the advancement of the liquid-solid reaction front in liquid metal particles during cycling processes. Furthermore, the researchers aim to investigate the influence of dopants by studying dynamic phase changes obtained through operando X-ray diffraction (XRD). To understand the development of stress and strain, along with its effect on phases and morphologies within a liquid metal particle during lithium-ion insertion and removal, numerical simulations based on a phase field model, incorporating fluid-structure interaction, electrochemical reaction, species diffusion, and interfacial effects, will be conducted.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于与溶剂泄漏和可燃性相关的重大安全风险,固态锂离子电池(LIB)是使用液体电解质的市售同类电池的更安全的替代品。通过减少额外安全功能的必要性,此类电池甚至可以支持更小、更强大的电池组。然而,尽管这些高离子导电固体电解质具有诸多优点,但要实现与液体电解质锂离子电池相当的比容量、倍率性能和循环寿命仍然具有挑战性。研究表明,一个主要障碍是固体电解质和固体电极之间的接口不充分。相反,液体电解质中的液固界面允许电极完全渗透,促进锂离子在活性材料颗粒表面的全面传输。为了利用固态电池中液固界面的优势,研究团队提出从固固界面过渡到液固界面。这可以通过在固态锂离子电池中用液态金属电极取代固态电极来实现。在锂离子嵌入和脱嵌的过程中,由于液态和固态之间的转变,电极-电解质界面和液态金属颗粒的内部都经历着不断的变化。了解这些动态变化对于充分研究液态金属固体电解质锂离子电池的潜力至关重要。该项目的目标是对锂离子嵌入和脱出过程中液态金属阳极和固体电解质之间的界面动力学有一个基本的了解。该项目将培养一支多元化、包容性的团队,包括研究生、本科生、预科生和 K-12 教师,特别强调鼓励代表性不足的人群的参与。该项目旨在为学生提供跨学科培训,弥合理论理解和实验之间的差距。在该项目中,该团队提出了一种研究新型固体电解质LIB的创新方法,该方法首次利用液态金属电极和固体电解质,在室温下形成液固界面。他们的目标是了解在锂离子嵌入和脱出过程中液-固界面和固-固界面之间的转变是如何发生的。从这项研究中获得的见解将促进将液态金属电极融入固体电解质电池的新技术的开发。该团队将利用原位操作聚焦离子束扫描电子显微镜(FIB-SEM)来分析形态的动态变化,并监测循环过程中液态金属颗粒中液固反应前沿的进展。此外,研究人员旨在通过研究原位 X 射线衍射 (XRD) 获得的动态相变来研究掺杂剂的影响。为了了解锂离子插入和脱出过程中应力和应变的发展及其对液态金属颗粒内相和形态的影响,基于相场模型的数值模拟结合了流固相互作用、电化学反应、物质扩散该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Likun Zhu其他文献

Gaussian process-based prognostics of lithium-ion batteries and design optimization of cathode active materials
基于高斯过程的锂离子电池预测和正极活性材料的设计优化
  • DOI:
    10.1016/j.jpowsour.2022.231026
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    H. Valladares;Tianyi Li;Likun Zhu;H. El;A. Hashem;A. Abdel;A. Tovar
  • 通讯作者:
    A. Tovar
Operando Investigation of Energy Storage Material by FIB-SEM System
利用 FIB-SEM 系统对储能材料进行操作研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Xinwei Zhou;Likun Zhu;Yuzi Liu
  • 通讯作者:
    Yuzi Liu
Blade-Type Reaction Front in Micrometer-sized Germanium Particles during Lithiation.
锂化过程中微米级锗颗粒的叶片式反应前沿。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Xinwei Zhou;Tianyi Li;Yi Cui;M. Meyerson;J. Weeks;C. Mullins;Yang Jin;Ho;Yuzi Liu;Likun Zhu
  • 通讯作者:
    Likun Zhu
Stress- and Interface-Compatible Red Phosphorus Anode for High-Energy and Durable Sodium-Ion Batteries
用于高能耐用钠离子电池的应力和界面兼容红磷阳极
  • DOI:
    10.1021/acsenergylett.0c02650
  • 发表时间:
    2021-01-15
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Xiang Liu;B. Xiao;Amine Daali;Xinwei Zhou;Zhou Yu;Xiang Li;Yuzi Liu;Liang Yin;Zhenzhen Yang;Chen Zhao;Likun Zhu;Yang Ren;Lei Cheng;Shabbir Ahmed;Zonghai Chen;X. Li;Gui‐Liang Xu;K. Amine
  • 通讯作者:
    K. Amine
Integrated micro fuel cell with on-demand hydrogen production and passive control MEMS
具有按需制氢和被动控制 MEMS 的集成微型燃料电池
  • DOI:
    10.1007/s10404-011-0916-0
  • 发表时间:
    2011-12-02
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    V. Swaminathan;Likun Zhu;B. Gurau;R. Masel;M. Shannon
  • 通讯作者:
    M. Shannon

Likun Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Likun Zhu', 18)}}的其他基金

Collaborative Research: Dynamics of chalcogenide-doped high capacity lithium-ion battery anode materials during cycling using in situ imaging
合作研究:利用原位成像研究硫属化物掺杂高容量锂离子电池负极材料在循环过程中的动力学
  • 批准号:
    1603847
  • 财政年份:
    2016
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-circulating, self-regulating microreactor for on-chip gas generation from liquid reactants
合作研究:用于从液体反应物产生片上气体的自循环、自调节微反应器
  • 批准号:
    1264739
  • 财政年份:
    2013
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Continuing Grant
Computed tomography image-based study for understanding the impact of electrode microstructure on lithium ion battery performance
基于计算机断层扫描图像的研究,用于了解电极微观结构对锂离子电池性能的影响
  • 批准号:
    1335850
  • 财政年份:
    2013
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant

相似国自然基金

变质岩中主要变质矿物化学成分环带性质的基本规律研究及其应用
  • 批准号:
    42330303
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
经济基本面与期权定价研究:基于经济不确定性的视角
  • 批准号:
    72301227
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于石墨间层质心插入理论的插层化学基本反应机制研究
  • 批准号:
    22379110
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“保基本”目标下“城乡居保”对农村老年人的经济福利效应研究
  • 批准号:
    72364030
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
基于碳烟基本粒子纳观结构演变的DPF滤芯颗粒层氧化模型构建研究
  • 批准号:
    52306128
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2426728
  • 财政年份:
    2024
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312229
  • 财政年份:
    2023
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
  • 批准号:
    2312667
  • 财政年份:
    2023
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2245406
  • 财政年份:
    2023
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
International Society for Magnetic Resonance in Medicine (ISMRM) workshop on WHATEVER: WHite Matter, Analysis, Translation, Experimental Validation, Evaluation, and Reproducibility
国际医学磁共振学会 (ISMRM) 研讨会主题为:白质、分析、翻译、实验验证、评估和再现性
  • 批准号:
    10757846
  • 财政年份:
    2023
  • 资助金额:
    $ 27.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了