Collaborative Research: Dynamics of chalcogenide-doped high capacity lithium-ion battery anode materials during cycling using in situ imaging

合作研究:利用原位成像研究硫属化物掺杂高容量锂离子电池负极材料在循环过程中的动力学

基本信息

  • 批准号:
    1603847
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Rechargeable lithium ion batteries help to enable sustainable energy systems by storing electricity generated by intermittent renewable resources such as wind and solar energy, or by powering zero-emission electric vehicles charged by electricity from renewable resources. The two key performance measures of lithium ion batteries are capacity and recharge rate, which determine how much energy a battery can store and how long it takes to fully recharge. One approach to significantly improve capacity is to replace conventional graphite anodes with alloy-type anode materials that include the elements silicon (Si), germanium (Ge), and tin (Sn). However, these alloy materials swell up after charging, which promotes mechanical failure. This project will address this issue by adding the element selenium (Se) to alloy-type anodes made from micrometer sized particles. The resulting Se-doped microparticles may be able to reduce swelling of the anode. Advanced imaging and computational studies will gain a fundamental scientific understanding of these processes, with the long-term goal of developing commercially affordable, high-performance anode materials for better batteries. The research will be a collaborative effort between researchers at three universities - Indiana University, Mississippi State University, and the University of Texas at Austin. Furthermore, the educational activities associated with this project will be coordinated between these three institutions, and will include integration of the research into undergraduate and graduate course lectures, involvement of undergraduate students and K-12 teachers in research, and outreach to pre-college students through development of short, energy-related animated videos.The overall goal of the research is to develop a fundamental understanding of the electrochemical, material phase, and morphological dynamics of Se-doped Ge and Sn microparticles during lithiation and de-lithiation reactions with lithium ion battery alloy-type anodes. The research plan has two objectives. The first objective is to investigate the dynamics of Se-doped materials during lithiation and de-lithiation, focusing on in situ measurement of phase and morphology change via in situ X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and transmission X-ray microscopy (TXM). Concurrently, the composition of the Se-containing inactive phase will be identified and its ionic conductivity will be determined. Furthermore, the effect of the active/inactive mixed phases on cycling performance for both Ge- and Sn-based electrodes will be studied. The second objective is to develop correlations between lithium ion battery cell performance and changes in Se-Ge and Se-Sn electrode microstructure through the afore-mentioned experiments and theoretical modeling. A phase field model that integrates the processes of electrochemical reaction, species diffusion, interfacial effects, as well as large elastoplastic deformation will be developed to simulate the concurrent evolution of phases, morphologies and stress within a Ge-Se or Sn-Se particle during lithiation and de-lithiation. Since it is likely that future high-capacity electrode materials will have large volume changes, the outcomes from the research may enable development of these new battery systems.
可充电锂离子电池通过存储风能和太阳能等间歇性可再生资源产生的电力,或为由可再生资源电力充电的零排放电动汽车提供动力,有助于实现可持续能源系统。 锂离子电池的两个关键性能指标是容量和充电速率,它们决定电池可以存储多少能量以及完全充电需要多长时间。显着提高容量的一种方法是用包含硅 (Si)、锗 (Ge) 和锡 (Sn) 元素的合金型阳极材料替代传统的石墨阳极。 然而,这些合金材料在充电后会膨胀,从而促进机械故障。该项目将通过将元素硒 (Se) 添加到由微米级颗粒制成的合金型阳极中来解决这个问题。 所得的硒掺杂微粒可能能够减少阳极的膨胀。 先进的成像和计算研究将对这些过程获得基本的科学理解,长期目标是开发商业上负担得起的高性能阳极材料,以实现更好的电池。这项研究将由印第安纳大学、密西西比州立大学和德克萨斯大学奥斯汀分校三所大学的研究人员合作完成。 此外,与该项目相关的教育活动将在这三个机构之间进行协调,包括将研究纳入本科生和研究生课程讲座、本科生和 K-12 教师参与研究以及向大学预科生进行推广通过开发与能源相关的动画短片。该研究的总体目标是对硒掺杂的 Ge 和 Sn 微粒在锂的锂化和脱锂反应过程中的电化学、材料相和形态动力学有一个基本的了解离子电池合金型阳极。 该研究计划有两个目标。第一个目标是研究硒掺杂材料在锂化和脱锂过程中的动力学,重点是通过原位 X 射线粉末衍射 (XRD)、透射电子显微镜 (TEM) 和透射原位测量相和形态变化。 X 射线显微镜(TXM)。 同时,将鉴定含硒非活性相的组成并测定其离子电导率。此外,还将研究活性/非活性混合相对 Ge 基和 Sn 基电极循环性能的影响。 第二个目标是通过上述实验和理论建模,建立锂离子电池性能与Se-Ge和Se-Sn电极微观结构变化之间的相关性。 将开发一个集成电化学反应、物质扩散、界面效应以及大弹塑性变形过程的相场模型,以模拟锂化过程中Ge-Se或Sn-Se颗粒内相、形态和应力的同时演化和脱锂。 由于未来的高容量电极材料可能会出现较大的体积变化,因此研究结果可能有助于开发这些新型电池系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Likun Zhu其他文献

Gaussian process-based prognostics of lithium-ion batteries and design optimization of cathode active materials
基于高斯过程的锂离子电池预测和正极活性材料的设计优化
  • DOI:
    10.1016/j.jpowsour.2022.231026
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    H. Valladares;Tianyi Li;Likun Zhu;H. El;A. Hashem;A. Abdel;A. Tovar
  • 通讯作者:
    A. Tovar
Operando Investigation of Energy Storage Material by FIB-SEM System
利用 FIB-SEM 系统对储能材料进行操作研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Xinwei Zhou;Likun Zhu;Yuzi Liu
  • 通讯作者:
    Yuzi Liu
Blade-Type Reaction Front in Micrometer-sized Germanium Particles during Lithiation.
锂化过程中微米级锗颗粒的叶片式反应前沿。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Xinwei Zhou;Tianyi Li;Yi Cui;M. Meyerson;J. Weeks;C. Mullins;Yang Jin;Ho;Yuzi Liu;Likun Zhu
  • 通讯作者:
    Likun Zhu
Stress- and Interface-Compatible Red Phosphorus Anode for High-Energy and Durable Sodium-Ion Batteries
用于高能耐用钠离子电池的应力和界面兼容红磷阳极
  • DOI:
    10.1021/acsenergylett.0c02650
  • 发表时间:
    2021-01-15
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Xiang Liu;B. Xiao;Amine Daali;Xinwei Zhou;Zhou Yu;Xiang Li;Yuzi Liu;Liang Yin;Zhenzhen Yang;Chen Zhao;Likun Zhu;Yang Ren;Lei Cheng;Shabbir Ahmed;Zonghai Chen;X. Li;Gui‐Liang Xu;K. Amine
  • 通讯作者:
    K. Amine
Integrated micro fuel cell with on-demand hydrogen production and passive control MEMS
具有按需制氢和被动控制 MEMS 的集成微型燃料电池
  • DOI:
    10.1007/s10404-011-0916-0
  • 发表时间:
    2011-12-02
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    V. Swaminathan;Likun Zhu;B. Gurau;R. Masel;M. Shannon
  • 通讯作者:
    M. Shannon

Likun Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Likun Zhu', 18)}}的其他基金

Collaborative Research: Fundamental understanding of interface dynamics in solid electrolyte batteries with liquid metal anode
合作研究:对液态金属阳极固体电解质电池界面动力学的基本了解
  • 批准号:
    2323474
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-circulating, self-regulating microreactor for on-chip gas generation from liquid reactants
合作研究:用于从液体反应物产生片上气体的自循环、自调节微反应器
  • 批准号:
    1264739
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Computed tomography image-based study for understanding the impact of electrode microstructure on lithium ion battery performance
基于计算机断层扫描图像的研究,用于了解电极微观结构对锂离子电池性能的影响
  • 批准号:
    1335850
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

低共熔溶剂与水二元体系从超浓电解液到稀水溶液转变过程中的界面结构及反应动力学研究
  • 批准号:
    22372140
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
Drp1介导的线粒体动力学调控糖代谢重编程对BMSC成骨分化的影响及机制研究
  • 批准号:
    82370935
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
前额叶层特异性神经动力学调控丘脑皮层环路促进麻醉觉醒的机制研究
  • 批准号:
    82371282
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
数据与模型耦合驱动的自供能传感系统动力学理论与应用研究
  • 批准号:
    12302022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337426
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242365
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了