Multivariate Statistical Methods for Genomic Data Integration
基因组数据整合的多元统计方法
基本信息
- 批准号:1262538
- 负责人:
- 金额:$ 54.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2014-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses a key modeling issue faced by many data analysts working with genomic data. For a set of individuals or observations, many different types of high throughput experimental datasets are generated, and the question then becomes how to model these data. In many problems, the goal is to prioritize which parts of the genome one wishes to study. While it is commonly assumed that the different data types are linearly correlated in either an unconditional or conditional sense, in many settings the nature of the correlation is unknown. This research focuses on multivariate methods of analysis with high-dimensional genomic data that relax the linearity assumption. Two classes of problems will be studied during the course of the project. The first is Hidden Markov Models and the second is multiple testing procedures, whose use have become commonplace with genomic datasets. This project proposes novel multivariate extensions of both types of method with a goal of being characterized by sound theoretical statistical principles while simultaneously being computationally feasible on big datasets. The methodology will be evaluated using several real datasets as well as through simulation studies.This work will involve an interplay between statisticians and biologists. The broader use of this work will be to prioritize molecules for follow-up studies in any biological setting. It will be useful for biologists and scientists studying disease processes who wish to find new therapeutic targets or further advance basic etiological understanding. The educational goals of the project include new course components for graduate students at Penn State and training of graduate students in Statistics.
该项目解决了许多与基因组数据一起工作的数据分析师所面临的关键建模问题。对于一组个体或观察结果,生成了许多不同类型的高吞吐量实验数据集,然后问题就变成了如何建模这些数据。在许多问题中,目标是优先考虑一个希望研究的基因组的哪些部分。尽管通常认为不同的数据类型在无条件或条件意义上是线性相关的,但在许多情况下,相关性的性质尚不清楚。这项研究重点是使用高维基因组数据来放松线性假设的多元分析方法。在项目过程中将研究两类问题。第一个是隐藏的马尔可夫模型,第二个是多个测试过程,其使用已与基因组数据集变得司空见惯。该项目提出了两种方法的新型多元扩展,其目标是以合理的理论统计原理为特征,同时在大数据集中同时进行计算。该方法将使用几个实际数据集以及通过模拟研究来评估。这项工作将涉及统计学家与生物学家之间的相互作用。这项工作的广泛使用将是在任何生物环境中优先考虑分子进行后续研究。这对于希望找到新的治疗靶标或进一步提高基本病因理解的生物学家和科学家将很有用。该项目的教育目标包括宾夕法尼亚州研究生的新课程组成部分以及统计研究生的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debashis Ghosh其他文献
Improving Generalizability of PET DL Algorithms: List-Mode Reconstructions Improve DOTATATE PET Hepatic Lesion Detection Performance
提高 PET DL 算法的通用性:列表模式重建提高 DOTATATE PET 肝脏病变检测性能
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xinyi Yang;Michael Silosky;Jonathan Wehrend;Daniel Litwiller;Muthiah Nachiappan;Scott D. Metzler;Debashis Ghosh;Fuyong Xing;Bennett B. Chin - 通讯作者:
Bennett B. Chin
A machine learning-based approach to determine infection status in recipients of BBV152 whole virion inactivated SARS-CoV-2 vaccine for serological surveys
基于机器学习的方法,用于确定 BBV152 全病毒粒子灭活 SARS-CoV-2 疫苗接受者的感染状态,用于血清学调查
- DOI:
10.1101/2021.12.16.21267889 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Prateek Singh;R. Ujjainiya;S. Prakash;S. Naushin;V. Sardana;Nitin Bhatheja;Ajay Pratap Singh;Joydeb Barman;K. Kumar;Raju Khan;K. B. Tallapaka;Mahesh Anumalla;Amit Lahiri;Susanta Kar;V. Bhosale;Mrigank Srivastava;M. Mugale;C. P. Pandey;Shaziya Khan;Shivani Katiyar;Desh Raj;Sharmeen Ishteyaque;Sonu Khanka;Ankita Rani;Promila;Jyotsna Sharma;Anuradha Seth;M. Dutta;Nishant Saurabh;M. Veerapandian;G. Venkatachalam;D. Bansal;D. Gupta;P. Halami;M. S. Peddha;G. Sundaram;R. P. Veeranna;A. Pal;R. Singh;S. Anandasadagopan;P. Karuppanan;S. Rahman;G. Selvakumar;Subramanian Venkatesan;M. Karmakar;H. K. Sardana;A. Kothari;D. Parihar;Anupma Thakur;A. Saifi;N. Gupta;Y. Singh;Ritu Reddu;Rizul Gautam;Anuj Mishra;Anshuman Mishra;Iranna Gogeri;G. Rayasam;Y. Padwad;V. Patial;V. Hallan;Damanpreet Singh;N. Tirpude;Partha Chakrabarti;S. K. Maity;D. Ganguly;R. Sistla;Narender Kumar Balthu;Kiran Kumar A;S. Ranjith;Vijay Kumar;Piyush Singh Jamwal;Anshu Wali;Sajad Ahmed;Rekha Chouhan;Sumit G. Gandhi;Nancy Sharma;Garima Rai;Faisal Irshad;V. Jamwal;M. Paddar;S. Khan;F. Malik;Debashis Ghosh;Ghanshyam Thakkar;S. K. Barik;P. Tripathi;Y. K. Satija;Sneha Mohanty;Md. Tauseef Khan;U. Subudhi;Pradip Sen;Rashmi Kumar;Anshu Bhardwaj;Pawan Gupta;Deepak Sharma;A. Tuli;Saumya Ray Chaudhuri;S. Krishnamurthi;P. L;Ch. V. Rao;B. N. Singh;Arvindkumar H. Chaurasiya;Meera Chaurasiyar;Mayuri Bhadange;B. Likhitkar;S. Mohite;Yogita Patil;Mahesh Kulkarni;R. Joshi;V. Pandya;A. Patil;Rachel Samson;Tejas Vare;M. Dharne;Ashok Giri;S. Paranjape;G. N. Sastry;J. Kalita;T. Phukan;Prasenjit Manna;W. Romi;P. Bharali;Dibyajyoti Ozah;R. Sahu;P. Dutta;Moirangthem Goutam Singh;Gayatri Gogoi;Y. B. Tapadar;Elapavalooru Vssk Babu;Rajeev K Sukumaran;A. Nair;Anoop Puthiyamadam;PrajeeshKooloth Valappil;Adrash Velayudhan Pillai Prasannakumari;Kalpana Chodankar;Samir R. Damare;V. V. Agrawal;Kumardeep Chaudhary;Anurag Agrawal;S. Sengupta;D. Dash - 通讯作者:
D. Dash
Sentinella<sup>®</sup>: A new portable intra-operative gamma camera for Sentinel Node localisation
- DOI:
10.1016/j.ejso.2010.08.021 - 发表时间:
2010-11-01 - 期刊:
- 影响因子:
- 作者:
Debashis Ghosh;A. O'Brien;D. Beck;C. Wickham;T. Davidson;M. Keshtgar - 通讯作者:
M. Keshtgar
Diagnostic and surgical challenges in treating squamous cell carcinoma of breast implant capsule: Case report and literature review
- DOI:
10.1016/j.ejso.2022.11.635 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:
- 作者:
Heba Khanfar;Natalie Allen;Naymar Torres;Khurram Chaudhary;Debashis Ghosh - 通讯作者:
Debashis Ghosh
A Unified Approach to Analysis of MRI Radiomics of Glioma Using Minimum Spanning Trees
使用最小生成树分析胶质瘤 MRI 放射组学的统一方法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:7.5
- 作者:
Olivier B. Simon;R. Jain;Y. Choi;Carsten Görg;K. Suresh;Cameron Severn;Debashis Ghosh - 通讯作者:
Debashis Ghosh
Debashis Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debashis Ghosh', 18)}}的其他基金
Empirical and Causal Models for Heterogeneous Data Fusion
异构数据融合的经验模型和因果模型
- 批准号:
2149492 - 财政年份:2022
- 资助金额:
$ 54.56万 - 项目类别:
Standard Grant
New Methods in High-Dimensional Causal Inference
高维因果推理的新方法
- 批准号:
1914937 - 财政年份:2019
- 资助金额:
$ 54.56万 - 项目类别:
Standard Grant
Multivariate Statistical Methods for Genomic Data Integration
基因组数据整合的多元统计方法
- 批准号:
1457935 - 财政年份:2014
- 资助金额:
$ 54.56万 - 项目类别:
Continuing Grant
相似国自然基金
基于多变量统计分析的复杂装备故障监测与诊断方法研究
- 批准号:62273354
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
基于多变量统计分析的复杂装备故障监测与诊断方法研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
多变量非正态数据结构方程模型的统计方法研究
- 批准号:31971029
- 批准年份:2019
- 资助金额:59 万元
- 项目类别:面上项目
高维数据下基于实时对照方法的质量控制研究
- 批准号:71702044
- 批准年份:2017
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于多变量统计的乘性故障诊断方法研究
- 批准号:61703036
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
- 批准号:
10658215 - 财政年份:2023
- 资助金额:
$ 54.56万 - 项目类别:
Multiomics data integration methods to discover putative causal variants, genes and patient heterogeneity for Alzheimers disease
多组学数据整合方法发现阿尔茨海默病的假定因果变异、基因和患者异质性
- 批准号:
10587524 - 财政年份:2023
- 资助金额:
$ 54.56万 - 项目类别:
Multivariate Statistics and Machine Learning for Quality Control of Dried Ocimum Products
用于干罗勒产品质量控制的多元统计和机器学习
- 批准号:
10676412 - 财政年份:2023
- 资助金额:
$ 54.56万 - 项目类别:
Bayesian modeling of multivariate mixed longitudinal responses with scale mixtures of multivariate normal distributions
具有多元正态分布尺度混合的多元混合纵向响应的贝叶斯建模
- 批准号:
10730714 - 财政年份:2023
- 资助金额:
$ 54.56万 - 项目类别: