Empirical and Causal Models for Heterogeneous Data Fusion

异构数据融合的经验模型和因果模型

基本信息

  • 批准号:
    2149492
  • 负责人:
  • 金额:
    $ 28.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This research project will advance the use of causal inference methods in situations where individual-level data are not available due to practical, ethical, or legal constraints. There has been a lot of work on the development of innovative methods to evaluate policy effects in observational databases, the area being termed causal inference. However, many of these methods require individual-level data. For a variety of reasons, it might not be possible to obtain individual-level data due to reasons such as maintaining patient privacy or other logistical issues. This project will extend statistical methodologies to accommodate practical real-world scenarios in a wide variety of disciplines, including medicine, the social sciences, and public health. There are a variety of important problems the new methods could be applied to, such as evaluating the effects of climate change on COVID19 incidence and deaths. Graduate students will be trained, and software and curricula in causal inference will be developed.This research project will develop new methods for combining heterogenous databases. Such data have become commonplace with the vast expansion of databases in various types of scientific and epidemiological applications. First, the project will develop new approaches to estimate empirical associations for heterogenous data fusion problems. The investigator will leverage model misspecification theory in conjunction with resampling/perturbation-based methodology. Second, the project will develop new causal inference approaches for heterogeneous data fusion problems, primarily focusing on constrained estimation, simulation-based approaches, and sensitivity analysis techniques. The results of this research should lead to new theoretical underpinnings in various areas of the mathematical sciences, including statistical theory and causal inference. Primary subfields of statistics that will be addressed in this research include likelihood theory and inference, estimating equations, model misspecification, and causal inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将在由于实用,道德或法律限制而无法获得个人级别数据的情况下,推动使用因果推理方法的使用。在开发创新方法方面,已经进行了许多工作,以评估观察数据库中的政策效应,该领域被称为因果推断。 但是,其中许多方法都需要个人级别的数据。 由于多种原因,由于维持患者隐私或其他后勤问题等原因,可能无法获得个人级别的数据。 该项目将扩展统计方法,以适应各种学科的实践现实情况,包括医学,社会科学和公共卫生。有多种重要问题可以应用于新方法,例如评估气候变化对COVID19发病率和死亡的影响。 将对研究生进行培训,并将开发因果推断的软件和课程。该研究项目将开发新的方法来组合异源数据库。在各种科学和流行病学应用中,这些数据与数据库的广泛扩展变得司空见惯。首先,该项目将开发新的方法来估计异源数据融合问题的经验关联。 研究人员将与基于重新采样/基于扰动的方法结合使用模型错误指定理论。其次,该项目将开发出新的因果推理方法,以解决异质数据融合问题,主要关注受限的估计,基于仿真的方法和灵敏度分析技术。 这项研究的结果应导致数学科学各个领域的新理论基础,包括统计理论和因果推断。这项研究将解决的统计学主要子场包括似然理论和推理,估算方程式,模型错误指定和因果推理。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的审查标准来通过评估来进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debashis Ghosh其他文献

Improving Generalizability of PET DL Algorithms: List-Mode Reconstructions Improve DOTATATE PET Hepatic Lesion Detection Performance
提高 PET DL 算法的通用性:列表模式重建提高 DOTATATE PET 肝脏病变检测性能
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinyi Yang;Michael Silosky;Jonathan Wehrend;Daniel Litwiller;Muthiah Nachiappan;Scott D. Metzler;Debashis Ghosh;Fuyong Xing;Bennett B. Chin
  • 通讯作者:
    Bennett B. Chin
A machine learning-based approach to determine infection status in recipients of BBV152 whole virion inactivated SARS-CoV-2 vaccine for serological surveys
基于机器学习的方法,用于确定 BBV152 全病毒粒子灭活 SARS-CoV-2 疫苗接受者的感染状态,用于血清学调查
  • DOI:
    10.1101/2021.12.16.21267889
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prateek Singh;R. Ujjainiya;S. Prakash;S. Naushin;V. Sardana;Nitin Bhatheja;Ajay Pratap Singh;Joydeb Barman;K. Kumar;Raju Khan;K. B. Tallapaka;Mahesh Anumalla;Amit Lahiri;Susanta Kar;V. Bhosale;Mrigank Srivastava;M. Mugale;C. P. Pandey;Shaziya Khan;Shivani Katiyar;Desh Raj;Sharmeen Ishteyaque;Sonu Khanka;Ankita Rani;Promila;Jyotsna Sharma;Anuradha Seth;M. Dutta;Nishant Saurabh;M. Veerapandian;G. Venkatachalam;D. Bansal;D. Gupta;P. Halami;M. S. Peddha;G. Sundaram;R. P. Veeranna;A. Pal;R. Singh;S. Anandasadagopan;P. Karuppanan;S. Rahman;G. Selvakumar;Subramanian Venkatesan;M. Karmakar;H. K. Sardana;A. Kothari;D. Parihar;Anupma Thakur;A. Saifi;N. Gupta;Y. Singh;Ritu Reddu;Rizul Gautam;Anuj Mishra;Anshuman Mishra;Iranna Gogeri;G. Rayasam;Y. Padwad;V. Patial;V. Hallan;Damanpreet Singh;N. Tirpude;Partha Chakrabarti;S. K. Maity;D. Ganguly;R. Sistla;Narender Kumar Balthu;Kiran Kumar A;S. Ranjith;Vijay Kumar;Piyush Singh Jamwal;Anshu Wali;Sajad Ahmed;Rekha Chouhan;Sumit G. Gandhi;Nancy Sharma;Garima Rai;Faisal Irshad;V. Jamwal;M. Paddar;S. Khan;F. Malik;Debashis Ghosh;Ghanshyam Thakkar;S. K. Barik;P. Tripathi;Y. K. Satija;Sneha Mohanty;Md. Tauseef Khan;U. Subudhi;Pradip Sen;Rashmi Kumar;Anshu Bhardwaj;Pawan Gupta;Deepak Sharma;A. Tuli;Saumya Ray Chaudhuri;S. Krishnamurthi;P. L;Ch. V. Rao;B. N. Singh;Arvindkumar H. Chaurasiya;Meera Chaurasiyar;Mayuri Bhadange;B. Likhitkar;S. Mohite;Yogita Patil;Mahesh Kulkarni;R. Joshi;V. Pandya;A. Patil;Rachel Samson;Tejas Vare;M. Dharne;Ashok Giri;S. Paranjape;G. N. Sastry;J. Kalita;T. Phukan;Prasenjit Manna;W. Romi;P. Bharali;Dibyajyoti Ozah;R. Sahu;P. Dutta;Moirangthem Goutam Singh;Gayatri Gogoi;Y. B. Tapadar;Elapavalooru Vssk Babu;Rajeev K Sukumaran;A. Nair;Anoop Puthiyamadam;PrajeeshKooloth Valappil;Adrash Velayudhan Pillai Prasannakumari;Kalpana Chodankar;Samir R. Damare;V. V. Agrawal;Kumardeep Chaudhary;Anurag Agrawal;S. Sengupta;D. Dash
  • 通讯作者:
    D. Dash
Sentinella<sup>®</sup>: A new portable intra-operative gamma camera for Sentinel Node localisation
  • DOI:
    10.1016/j.ejso.2010.08.021
  • 发表时间:
    2010-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Debashis Ghosh;A. O'Brien;D. Beck;C. Wickham;T. Davidson;M. Keshtgar
  • 通讯作者:
    M. Keshtgar
Diagnostic and surgical challenges in treating squamous cell carcinoma of breast implant capsule: Case report and literature review
  • DOI:
    10.1016/j.ejso.2022.11.635
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Heba Khanfar;Natalie Allen;Naymar Torres;Khurram Chaudhary;Debashis Ghosh
  • 通讯作者:
    Debashis Ghosh
A Unified Approach to Analysis of MRI Radiomics of Glioma Using Minimum Spanning Trees
使用最小生成树分析胶质瘤 MRI 放射组学的统一方法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Olivier B. Simon;R. Jain;Y. Choi;Carsten Görg;K. Suresh;Cameron Severn;Debashis Ghosh
  • 通讯作者:
    Debashis Ghosh

Debashis Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debashis Ghosh', 18)}}的其他基金

New Methods in High-Dimensional Causal Inference
高维因果推理的新方法
  • 批准号:
    1914937
  • 财政年份:
    2019
  • 资助金额:
    $ 28.15万
  • 项目类别:
    Standard Grant
Multivariate Statistical Methods for Genomic Data Integration
基因组数据整合的多元统计方法
  • 批准号:
    1457935
  • 财政年份:
    2014
  • 资助金额:
    $ 28.15万
  • 项目类别:
    Continuing Grant
Multivariate Statistical Methods for Genomic Data Integration
基因组数据整合的多元统计方法
  • 批准号:
    1262538
  • 财政年份:
    2013
  • 资助金额:
    $ 28.15万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于因果推理的人机物融合系统需求建模与验证研究
  • 批准号:
    62362006
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向癌症驱动因子识别及其调控作用预测的因果推断方法研究
  • 批准号:
    62372210
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
高密度倒装芯片缺陷的自适应稀疏表征与深度因果迁移智能识别方法研究
  • 批准号:
    52375099
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于行为因果推理的跨网络用户对齐技术研究
  • 批准号:
    62302303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于因果小样本学习的卫星用空间轴承可信故障诊断方法
  • 批准号:
    52375089
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 28.15万
  • 项目类别:
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
  • 批准号:
    2905812
  • 财政年份:
    2023
  • 资助金额:
    $ 28.15万
  • 项目类别:
    Studentship
Constructing Causal Models Through Path Analysis of Psychological Factors: Focusing on the English Proficiency of Non-English Majors
通过心理因素路径分析构建因果模型——以非英语专业学生英语水平为中心
  • 批准号:
    23K00660
  • 财政年份:
    2023
  • 资助金额:
    $ 28.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PTSD and Autoimmune Disease: Towards Causal Effects, Risk Factors, and Mitigators
创伤后应激障碍 (PTSD) 和自身免疫性疾病:因果效应、危险因素和缓解措施
  • 批准号:
    10696671
  • 财政年份:
    2023
  • 资助金额:
    $ 28.15万
  • 项目类别:
Elucidating endolysosomal trafficking dysregulation induced by APOE4 in human astrocytes
阐明人星形胶质细胞中 APOE4 诱导的内溶酶体运输失调
  • 批准号:
    10670573
  • 财政年份:
    2023
  • 资助金额:
    $ 28.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了