Collaborative research: A multi-method approach to determine the role of semiconducting oxide and sulfide surfaces in catalyzing As, Cr, and Se redox reactions

合作研究:采用多种方法确定半导体氧化物和硫化物表面在催化 As、Cr 和 Se 氧化还原反应中的作用

基本信息

项目摘要

Technical description.Redox reactions are the driving force behind the mobilization and geochemical (and biogeochemical) cycling of As, Cr, and Se at the Earth's surface. The kinetics of these reactions are known to be catalyzed by sulfide and oxide mineral surfaces based on the development of empirically derived rate laws from macroscale experiments, but the actual reaction mechanisms (occurring at the nanoscale) are far from being understood. Previous studies by the Principle Investigators have demonstrated the importance of processes such as proximity effects, spintransitions, and oxygen dissociation to control the rate of redox reactions. This project will attempt to quantify these atomic scale processes in the context of the known rate laws, thereby linking the macroscale observables with the nanoscale processes that may be rate limiting.The strength of the U. of M. and Dartmouth College approach is their unique combination of molecular simulations (quantum mechanical to account for charge and electron spin transfer), electrochemical methods, and surface probe techniques to describe surface-mediated redox mechanisms and to resolve individual rate-determining steps. Molecular simulations will predict possible activated states that can occur between co-adsorbates on the surface and give insight into the reaction mechanism itself, especially steps that may be rate limiting, such as spin transfer, ligand reorganization, bond breaking, or mass transport (to name a few). Microelectrode techniques that have not traditionally been applied to study environmental reactions will be used to rapidly evaluate surface-specific mechanisms and kinetics in multivariable space. Finally, redox-dependent scanning probe microscopy will allow to observe these processes in situ.This study is a necessary "transition state" for the development of more comprehensive kinetic redox models in the future that will include bacterially-mediated redox processes, biomineralization, and the role of sulfide and oxide mineral surfaces as templates for the formation of complex organic molecules (i.e., precursors for origin of life).Broader significance and importance.Answering the aforementioned questions has profound implications for understanding the geochemical cycling of toxic elements and, maybe most importantly in this regard, provides a necessary foundation for future investigations on microbe-mineral interfaces. The results of this study will be important to the engineer developing permeable reactive barriers to immobilize toxic elements or to the geoscientist developing predictive models to describe the mobility of these species in the near-surface environment. The potential implications for technology development are widespread, including heterogeneous catalysts, chemical sensors, anti-corrosion processes, and photovoltaics, to name a few.
技术描述。氧化还原反应是地球表面砷、铬和硒的动员和地球化学(和生物地球化学)循环背后的驱动力。根据宏观实验中经验得出的速率定律的发展,已知这些反应的动力学是由硫化物和氧化物矿物表面催化的,但实际的反应机制(发生在纳米尺度)还远未被了解。原理研究人员之前的研究已经证明了邻近效应、自旋跃迁和氧解离等过程对于控制氧化还原反应速率的重要性。该项目将尝试在已知速率定律的背景下量化这些原子尺度过程,从而将宏观可观测值与可能限制速率的纳米尺度过程联系起来。密歇根大学和达特茅斯学院方法的优势在于其独特的方法结合分子模拟(量子力学来解释电荷和电子自旋转移)、电化学方法和表面探针技术来描述表面介导的氧化还原机制并解决各个速率决定步骤。分子模拟将预测表面共吸附物之间可能发生的激活状态,并深入了解反应机制本身,特别是可能限制速率的步骤,例如自旋转移、配体重组、键断裂或质量传递(以举几个例子)。传统上未应用于研究环境反应的微电极技术将用于快速评估多变量空间中的表面特定机制和动力学。最后,氧化还原依赖性扫描探针显微镜将允许在原位观察这些过程。这项研究是未来开发更全面的动力学氧化还原模型的必要“过渡状态”,其中包括细菌介导的氧化还原过程、生物矿化和硫化物和氧化物矿物表面作为形成复杂有机分子(即生命起源的前体)的模板的作用。更广泛的意义和重要性。回答上述问题对于理解地球化学循环具有深远的影响有毒元素,也许在这方面最重要的是,为未来微生物-矿物界面的研究提供了必要的基础。这项研究的结果对于开发可渗透反应屏障以固定有毒元素的工程师或对于开发预测模型以描述这些物种在近地表环境中的流动性的地球科学家来说非常重要。对技术发展的潜在影响是广泛的,包括多相催化剂、化学传感器、防腐工艺和光伏发电等。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Udo Becker其他文献

Simulation of thermodynamic mixing properties of actinide-containing zircon solid solutions
含锕系锆石固溶体热力学混合特性模拟
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Ferriss;Rodney C. Ewing;Udo Becker
  • 通讯作者:
    Udo Becker
Dissolution enables dolomite crystal growth near ambient conditions
溶解使白云石晶体在接近环境条件下生长
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Joonsoon Kim;Yuki Kimura;Brian Puchala;T. Yamazaki;Udo Becker;Wenhao Sun
  • 通讯作者:
    Wenhao Sun

Udo Becker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Udo Becker', 18)}}的其他基金

NIRT: Nanoparticle-Environment Interfaces: Interactions in Natural Systems
NIRT:纳米颗粒-环境界面:自然系统中的相互作用
  • 批准号:
    0403732
  • 财政年份:
    2004
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Standard Grant
The Proximity effect on Semiconducting Mineral Surfaces
半导体矿物表面的邻近效应
  • 批准号:
    0309772
  • 财政年份:
    2003
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Standard Grant

相似国自然基金

面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
不确定环境下多式联运系统优化与协作机制研究
  • 批准号:
    72371169
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
基于认知视角的多模态信息对人机协作施工人因失误的早期干预机理研究
  • 批准号:
    72301018
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348956
  • 财政年份:
    2024
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了