The Proximity effect on Semiconducting Mineral Surfaces

半导体矿物表面的邻近效应

基本信息

项目摘要

AbstractThis project deals with a new type of reaction mechanism: the co-reaction of different species on semiconducting mineral surfaces or within a semiconducting mineral. Hereby, the reactants can be some distance apart from each other and, nonetheless, enhance or inhibit the interaction of the other reactant with the mineral. We first described this reaction mechanism, which we call the proximity effect, a year ago and have begun to evaluate the distance dependence between the reaction partners. In this project, a systematic study is proposed on such proximity effects, mainly on sulfides but also on some important reactions on oxides. The quantum mechanical evaluation of the reaction partners such as As/Au or Bi/Ag in galena and pyrite/arsenopyrite will help to understand previously described processes such as coupled substitutions and the preferred incorporation of gold into arsenopyrite and arsenian pyrite (compared with pyrite). Furthermore, the detailed description of surface diffusion processes will elucidate the mechanism of cluster or nanoparticle formation on sulfides surfaces or within the bulk. Understanding these processes is important to develop a consistent theory on the formation of gold and silver-containing ore deposits. Furthermore, the proximity effect may play an important role in the oxidation and weathering of sulfides and is, therefore, instrumental for the evaluation of environmentally important processes in acid mine drainage.In addition, environmentally and technically important reactions on oxides will be evaluated. It was previously observed that the electronic structure on hematite surface steps is significantly different from the valence band structure of flat surfaces. Therefore, the directed proximity effect will be examined along steps, which enhances electron transfer along steps on Fe2O3 surfaces and thus, the adsorption and oxidation of Mn at these steps. Furthermore, the combined attack of water and oxygen on different UO2 surfaces will be compared with the previously observed formation of oxidation patches on pyrite in light of the proximity effect. This effect helped resolve the complicated oxidation and weathering mechanism on a FeS2 (001) surface and may resolve the reaction path of uraninite corrosion, which is an unwanted effect in storing radioactive materials.Even though the proposed studies aim at a basic understanding of the proximity effect, it will have a broader impact on a wide variety of applications in environmental geochemistry, in the evaluation of ore deposits, in future options for metal extraction techniques, and for other technical applications such as the purification of drinking water using hematite as a filter material, or the evaluation of potential hazards due to the weathering of uranium oxide minerals. Due to the general character of these enhanced co-reactivity processes, the theory and findings can be applied to other fields such as physics, chemical engineering, materials science, and nuclear engineering. Early stages and planning of this project have already sparked collaborations across campus and with other universities. Finally, the new teaching program on minerals and materials surfaces at the University of Michigan can use these processes as a practical application of the interface of quantum mechanics of semiconductors and more classical approaches to mineral surface reactivity.
摘要该项目研究一种新型反应机制:不同物质在半导体矿物表面或半导体矿物内部的共反应。 因此,反应物可以彼此间隔一定距离,但仍然增强或抑制其他反应物与矿物的相互作用。 一年前,我们首次描述了这种反应机制,我们称之为邻近效应,并开始评估反应伙伴之间的距离依赖性。 在这个项目中,提出了对这种邻近效应的系统研究,主要针对硫化物,但也针对氧化物的一些重要反应。 对反应伙伴(例如方铅矿和黄铁矿/毒砂中的 As/Au 或 Bi/Ag)的量子力学评估将有助于理解先前描述的过程,例如耦合取代以及金优选掺入毒砂和砷黄铁矿(与黄铁矿相比) 。 此外,表面扩散过程的详细描述将阐明硫化物表面或本体内簇或纳米颗粒形成的机制。 了解这些过程对于发展关于金银矿床形成的一致理论非常重要。 此外,邻近效应可能在硫化物的氧化和风化中发挥重要作用,因此有助于评估酸性矿山排水中对环境重要的过程。此外,还将评估氧化物的环境和技术上重要的反应。 先前观察到赤铁矿表面台阶上的电子结构与平坦表面的价带结构显着不同。 因此,将沿台阶检查定向邻近效应,这增强了 Fe2O3 表面上沿台阶的电子转移,从而增强了这些台阶上 Mn 的吸附和氧化。此外,根据邻近效应,水和氧对不同 UO2 表面的联合攻击将与先前观察到的黄铁矿上氧化斑的形成进行比较。 这种效应有助于解决 FeS2 (001) 表面复杂的氧化和风化机制,并可能解决铀矿腐蚀的反应路径,这是储存放射性材料时的不良影响。尽管拟议的研究旨在对邻近区域有基本的了解影响,它将对环境地球化学、矿床评估、金属提取技术的未来选择以及其他技术应用(例如使用赤铁矿作为过滤器净化饮用水)产生更广泛的影响材料,或评估氧化铀矿物风化造成的潜在危害。 由于这些增强的共反应过程的一般特征,该理论和发现可以应用于物理、化学工程、材料科学和核工程等其他领域。 该项目的早期阶段和规划已经引发了校园内以及与其他大学的合作。 最后,密歇根大学关于矿物和材料表面的新教学计划可以将这些过程用作半导体量子力学界面和矿物表面反应性更经典方法的实际应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Udo Becker其他文献

Simulation of thermodynamic mixing properties of actinide-containing zircon solid solutions
含锕系锆石固溶体热力学混合特性模拟
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Ferriss;Rodney C. Ewing;Udo Becker
  • 通讯作者:
    Udo Becker
Dissolution enables dolomite crystal growth near ambient conditions
溶解使白云石晶体在接近环境条件下生长
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Joonsoon Kim;Yuki Kimura;Brian Puchala;T. Yamazaki;Udo Becker;Wenhao Sun
  • 通讯作者:
    Wenhao Sun

Udo Becker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Udo Becker', 18)}}的其他基金

Collaborative research: A multi-method approach to determine the role of semiconducting oxide and sulfide surfaces in catalyzing As, Cr, and Se redox reactions
合作研究:采用多种方法确定半导体氧化物和硫化物表面在催化 As、Cr 和 Se 氧化还原反应中的作用
  • 批准号:
    1223976
  • 财政年份:
    2012
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Standard Grant
NIRT: Nanoparticle-Environment Interfaces: Interactions in Natural Systems
NIRT:纳米颗粒-环境界面:自然系统中的相互作用
  • 批准号:
    0403732
  • 财政年份:
    2004
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Standard Grant

相似国自然基金

缺陷对二维半导体/金属界面力学行为的影响及力电协同优化
  • 批准号:
    12302133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
半导体硅单晶制备过程中运动系统对晶体品质的影响研究
  • 批准号:
    62373299
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于半导体理论精细调控氧空位及其对层状MoO(3-x)电极插层赝电容储能机制影响的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
掺杂对碳化硅半导体材料形变机理的影响研究
  • 批准号:
    62204216
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单原子合金对氧化物半导体气体传感性能的影响研究
  • 批准号:
    62271225
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Development of novel ladder-type pi-frameworks and high performance organic semiconducting materials.
新型梯型π骨架和高性能有机半导体材料的开发。
  • 批准号:
    23K04878
  • 财政年份:
    2023
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chemical Field Effect Transistors Incorporating Ultrapure Semiconducting Single Walled Carbon Nanotubes for the Detection of Carbon Dioxide
结合超纯半导体单壁碳纳米管的化学场效应晶体管用于检测二氧化碳
  • 批准号:
    503058-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Postdoctoral Fellowships
Origin of the Strong Induced Chiroptical Effect in Semiconducting Polymer/Helicene Blends
半导体聚合物/螺旋烯共混物中强诱导手性光学效应的起源
  • 批准号:
    EP/P002250/1
  • 财政年份:
    2017
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Research Grant
Chemical Field Effect Transistors Incorporating Ultrapure Semiconducting Single Walled Carbon Nanotubes for the Detection of Carbon Dioxide
结合超纯半导体单壁碳纳米管的化学场效应晶体管用于检测二氧化碳
  • 批准号:
    503058-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Postdoctoral Fellowships
Origin of the Strong Induced Chiroptical Effect in Semiconducting Polymer/Helicene Blends
半导体聚合物/螺旋烯共混物中强诱导手性光学效应的起源
  • 批准号:
    EP/P000525/1
  • 财政年份:
    2017
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了