SHF: Small: INTEGRATED CIRCUITS BROADBAND MULTISCALE ANALYSIS WITH FAST ALGORITHMS

SHF:小型:利用快速算法进行集成电路宽带多尺度分析

基本信息

  • 批准号:
    1218552
  • 负责人:
  • 金额:
    $ 44.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

This project aims to improve and develop electromagnetic (EM) analysis tools to meet the demand of the computer chip industry. The modeling of EM effects in computer integrated circuits (IC) has in recent years become increasingly important, due to the increased transistor density and switching clock rate of CPU?s in a computer. For this reason, EM effect is a challenge identified by the International Technology Roadmap for Semiconductors (ITRS) as an area of priority. But the exorbitant computational cost and complexity of such EM modeling problems have precluded their precise solution so far. Commercial simulation tools for multi-function broadband ICs, which trade accuracy for efficiency, cannot fully meet the stringent demands for broad bandwidth and complexity of next generation applications. However, fast algorithms for EM simulations have potentials when stabilized with appropriate techniques for broadband applications to capture both circuit physics and wave physics. Fast, efficient, and highly stable algorithms will be developed for seeking broadband, multi-scale solutions of IC problems. The solutions will be integrated with existing Electronics Design and Automation (EDA) tools, and co-design will be studied at chip and package levels. The work will be connected to real-world problems and models will be validated with measurements. The potential impact of fast and efficient modeling technique for electronic ICs can alter how computers are designed. It will remove bottlenecks caused by EM effects due to increased transistor density and switching clock rates, and allow the accurate virtual prototyping of circuit design over a broad frequency range. It will also encourage IC designers to use more microwave engineering paradigms in future IC designs. Hence, it will expand the design space of IC and circuit designers, increase their repertoire of toolboxes, and enrich new possibilities for future IC designs. Due to the lack of high-quality computer-aided design (CAD) design tools that incorporate EM effects efficiently and accurately, IC designers face bottlenecks due to signal and power integrity issues in 3D IC designs. By precise and efficient electromagnetic modeling, CAD IC characterization will be improved and the design barriers faced by IC designers will be pushed back. In addition, this project will train students, at various levels ranging from undergraduates to graduates, to be well versed in electromagnetic physics, applied mathematics, computer science, and measurements (with a keen focus on the science of IC simulation and design). Students schooled in this cross-disciplinary field generally adapt easily to adjacent areas of research in academia and industry. Hence, this project will train badly needed human resource in computational science and engineering and adjacent fields for the advancement of high tech. EM physics, valid over a vast length scale, is fundamental to many electrical engineering technologies. Fast, broadband computational electromagnetics (CEM) algorithms for complex structures are applicable to a large variety of other applications including micro- and nano-technologies, ranging from meta-material modeling, to nano-optics and nano-lithography. It can help in the design of super-resolution lithography, and improve the modeling of EM effects in N/MEMS, sensors and actuators, interconnects in computers at the package level, as well as at the board level. It will enable the modeling of small, complex, smart, and reconfigurable antennas, RF integrated circuits, as well as greatly impacting terahertz modeling, biotech, and homeland security technology development.
该项目旨在改善和开发电磁(EM)分析工具,以满足计算机芯片行业的需求。 近年来,由于计算机中CPU的晶体管密度和切换时钟速率的提高,近年来计算机集成电路(IC)中EM效应的建模变得越来越重要。 因此,EM效应是国际技术路线图(ITRS)作为优先领域所确定的挑战。 但是,到目前为止,此类建模问题的高昂计算成本和复杂性排除了其精确的解决方案。用于效率的贸易准确性的多功能宽带IC的商业仿真工具无法完全满足对下一代应用程序的广泛带宽和复杂性的严格需求。 但是,使用适当的宽带应用技术稳定稳定EM模拟的快速算法具有捕获电路物理和波浪物理学的适当技术。 将开发快速,高效且高度稳定的算法,以寻求IC问题的宽带多尺度解决方案。 该解决方案将与现有的电子设计和自动化(EDA)工具集成在一起,并将在芯片和包装级别上研究共同设计。 这项工作将连接到现实世界中的问题,模型将通过测量验证。快速有效的建模技术对电子IC的潜在影响会改变计算机的设计方式。 由于晶体管密度的增加和切换时钟速率,它将消除由EM效应引起的瓶颈,并允许在较大频率范围内进行电路设计的精确虚拟原型制作。 它还将鼓励IC设计师在未来的IC设计中使用更多的微波工程范例。 因此,它将扩大IC和电路设计师的设计空间,增加工具箱的曲目,并丰富未来IC设计的新可能性。 由于缺乏高质量的计算机辅助设计(CAD)设计工具,可以有效,准确地融合EM效果,因此IC设计师由于3D IC设计中的信号和功率完整性问题而面临瓶颈。 通过精确有效的电磁建模,将改进CAD IC表征,并将IC设计师面临的设计屏障推向后退。 此外,该项目将培训从本科到毕业生的各个级别的学生,精通电磁物理学,应用数学,计算机科学和测量值(对IC模拟和设计的科学非常重视)。 在这个跨学科领域受过教育的学生通常很容易适应学术界和工业研究的邻近研究领域。 因此,该项目将在计算科学和工程以及邻近领域的急需人力资源培训,以提高高科技。 EM物理学在巨大的规模上有效,是许多电气工程技术的基础。 复杂结构的快速,宽带计算电磁学(CEM)算法适用于各种其他应用,包括微技术和纳米技术,范围从元材料建模到纳米透明质学和纳米占地。 它可以帮助设计超分辨率光刻,并改善N/MEM,传感器和执行器中EM效应的建模,在包装级别以及板级别的计算机中的互连。 它将实现小型,复杂,智能和可重新配置的天线,RF集成电路的建模,并极大地影响Terahertz建模,生物技术和国土安全技术开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weng Chew其他文献

Weng Chew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weng Chew', 18)}}的其他基金

CDS&E: Enabling Quantum Technology Design Optimization Using Large-Scale Quantum Information Preserving Computational Electromagnetics Methods
CDS
  • 批准号:
    2202389
  • 财政年份:
    2022
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
High Accuracy, Broadband Simulation of Complex Structures with Quantum Effects, Parallel Fast Algorithm, and Integral Equation Domain Decomposition
具有量子效应的复杂结构的高精度、宽带模拟、并行快速算法和积分方程域分解
  • 批准号:
    1818910
  • 财政年份:
    2017
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
High Accuracy, Broadband Simulation of Complex Structures with Quantum Effects, Parallel Fast Algorithm, and Integral Equation Domain Decomposition
具有量子效应的复杂结构的高精度、宽带模拟、并行快速算法和积分方程域分解
  • 批准号:
    1609195
  • 财政年份:
    2016
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
Nonlinear Inverse Scattering Methods for Three Dimensional Objects
三维物体的非线性逆散射方法
  • 批准号:
    9906651
  • 财政年份:
    1999
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Continuing Grant
Nonlinear Inverse Scattering Methods for Large Objects
大物体的非线性逆散射方法
  • 批准号:
    9302145
  • 财政年份:
    1994
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Continuing Grant
Fast Algorithms for Wave Scattering of Large Inhomogeneous Bodies
大型非均匀物体波散射的快速算法
  • 批准号:
    9224466
  • 财政年份:
    1993
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
Presidential Young Investigator Award: Forward and Inverse Scattering Problems
总统青年研究员奖:前向和逆向散射问题
  • 批准号:
    8552891
  • 财政年份:
    1986
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Podoplanin调控EGFR信号通路介导NTRK融合基因阳性非小细胞肺癌靶向耐药的机制研究
  • 批准号:
    82373044
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
融合多源异构数据的小微企业经营风险智能识别与应对策略研究
  • 批准号:
    72301188
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多时序多模态分子影像Delta深度融合学习预测非小细胞肺癌免疫治疗疗效的研究
  • 批准号:
    82371994
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
靶向非小细胞肺癌ALK融合蛋白新型放射性示踪剂的研制及其初步应用探索
  • 批准号:
    22376125
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
融合多源空地数据与物理机制的低纬小尺度电离层近实时模型研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
  • 批准号:
    2334380
  • 财政年份:
    2024
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
SHF: Small: Testing and Design-for-Test Techniques for Monolithic 3D Integrated Circuits
SHF:小型:单片 3D 集成电路的测试和测试设计技术
  • 批准号:
    2309822
  • 财政年份:
    2023
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
SHF: Small: Explainable Machine Learning for Better Design of Very Large Scale Integrated Circuits
SHF:小:可解释的机器学习,用于更好地设计超大规模集成电路
  • 批准号:
    2322713
  • 财政年份:
    2023
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
CCF: SHF: Small: Self-Adaptive Interference-Avoiding Wireless Receiver Hardware through Real-Time Learning-Based Automatic Optimization of Power-Efficient Integrated Circuits
CCF:SHF:小型:通过基于实时学习的高能效集成电路自动优化实现自适应干扰避免无线接收器硬件
  • 批准号:
    2218845
  • 财政年份:
    2022
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
CCF:SHF:Small:NAND gate based integrated DNA circuits
CCF:SHF:Small:基于与非门的集成 DNA 电路
  • 批准号:
    2226021
  • 财政年份:
    2022
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了