CCF: SHF: Small: Self-Adaptive Interference-Avoiding Wireless Receiver Hardware through Real-Time Learning-Based Automatic Optimization of Power-Efficient Integrated Circuits
CCF:SHF:小型:通过基于实时学习的高能效集成电路自动优化实现自适应干扰避免无线接收器硬件
基本信息
- 批准号:2218845
- 负责人:
- 金额:$ 59.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The sheer number of devices in the Internet of Things (IoT) is creating an extremely crowded and dynamic spectrum environment. As such, continuous and seamless adaptation of wireless-communication parameters will become essential in the next few years. On the other hand, typical radio-frequency (RF) integrated circuits are statically optimized for a fixed set of parameters and communication standards, which leaves limited room for real-time optimization at the intersection of hardware and software. Indeed, many of today’s devices are tailored for worst-case scenarios associated with a particular communication standard, which leads to limited performance and excessive power consumption. Conversely, real-time optimization allows to quickly reconfigure circuits for energy-efficient operation while achieving system-level performance goals. This challenge will be addressed by devising Radio Real-Time Machine Learning (RadioRTML), a platform that will demonstrate the feasibility of automatic RF integrated-circuit optimization through machine learning (ML) techniques directly implemented with reconfigurable hardware. This research will transform how the optimization of radio frequency systems is done today by demonstrating that real-time ML-based adaptation of RF parameters is able to achieve significant performance improvements. The outcomes will have long-lasting benefits for the design and optimization of low-power RF circuits for adaptive energy-efficient communication. Furthermore, the project will provide unique training for graduate and undergraduate students at the crossroads of machine learning and integrated circuit design. Automatic machine-learning-based optimization of RF integrated circuits will be investigated through digital control of analog RF front-end circuits. Novel deep reinforcement-learning (DRL) algorithms will be developed to deliver unprecedented flexibility while improving energy efficiency and minimizing interference impacts. A key challenge in the application of DRL is to design a policy network expressive enough to achieve the required performance, yet implementable in a resource-constrained embedded IoT platform. For this reason, new techniques for effective and efficient policy network design will be created. Since DRL is known to exhibit slow convergence times and high energy consumption, this research will include the design of novel transfer-learning techniques to speed up DRL convergence, and it will leverage edge-computing techniques to significantly reduce the energy consumption of the platform. At the RF circuit level, customized topologies and design techniques will be created to construct a flexible receiver front-end. RadioRTML will be prototyped on a System-on-Chip (SoC)-based software-defined radio (SDR) connected to a custom-designed printed circuit board for the RF front-end chip. To thoroughly train and test the RadioRTML algorithms, large-scale data collection will be performed utilizing Arena (a 64-antenna 24-SDR system located at Northeastern University), Colosseum (the world’s largest network emulator), and the NSF POWDER testbed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
另一方面,物联网 (IoT) 中的设备数量庞大,造成了极其拥挤和动态的频谱环境,因此,无线通信参数的连续、无缝调整将在未来几年变得至关重要。射频 (RF) 集成电路针对一组固定的参数和通信标准进行静态优化,这为硬件和软件交叉点的实时优化留下了有限的空间。 事实上,当今的许多设备都是针对最坏情况量身定制的。与特定通信标准相关的场景,这导致有限的离线实时优化允许快速重新配置电路以实现节能运行,同时实现系统级性能目标,这一挑战将通过设计无线电实时机器学习(RadioRTML)来解决,该平台将通过直接使用可重构硬件实现的机器学习 (ML) 技术来展示自动 RF 集成电路优化的可行性。这项研究将通过展示基于 ML 的实时 RF 自适应来改变当今射频系统优化的方式。参数可以实现显着的性能改进。该成果将为自适应节能通信的低功耗射频电路的设计和优化带来持久的好处。此外,该项目将为处于机器十字路口的研究生和本科生提供独特的培训。将通过模拟射频前端电路的数字控制来研究基于自动机器学习的射频集成电路优化,以提供前所未有的灵活性,同时提高能量。效率和干扰最小化影响是关键。 DRL 应用的挑战是设计一个具有足够表达能力的策略网络,以实现所需的性能,但可以在资源有限的嵌入式物联网平台中实现,因此,自 DRL 以来,将创建有效且高效的策略网络设计的新技术。已知收敛时间慢且能耗高,这项研究将包括设计新颖的迁移学习技术以加速 DRL 收敛,并将利用边缘计算技术显着降低平台的能耗。等级,将创建定制的拓扑和设计技术来构建灵活的接收器前端 RadioRTML 将在连接到定制设计的印刷电路板的基于片上系统 (SoC) 的软件定义无线电 (SDR) 上进行原型设计。为了彻底训练和测试RadioRTML算法,将利用Arena(位于东北大学的64天线24-SDR系统)、Colosseum(世界上最大的系统)进行大规模数据收集。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesco Restuccia其他文献
Preserving QoI in participatory sensing by tackling location-spoofing through mobile WiFi hotspots
通过移动 WiFi 热点解决位置欺骗问题,保持参与式感知中的 QoI
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Francesco Restuccia;A. Saracino;Sajal K. Das;F. Martinelli - 通讯作者:
F. Martinelli
LVS: A WiFi-based system to tackle Location Spoofing in location-based services
LVS:基于 WiFi 的系统,用于解决基于位置的服务中的位置欺骗问题
- DOI:
10.1109/wowmom.2016.7523533 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Francesco Restuccia;A. Saracino;Sajal K. Das;F. Martinelli - 通讯作者:
F. Martinelli
AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC
AXI HyperConnect:用于 FPGA SoC 中硬件加速器的可预测的管理程序级互连
- DOI:
10.1109/dac18072.2020.9218652 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Francesco Restuccia;Alessandro Biondi;Mauro Marinoni;Giorgiomaria Cicero;G. Buttazzo - 通讯作者:
G. Buttazzo
Security Verification of the OpenTitan Hardware Root of Trust
OpenTitan 硬件信任根的安全验证
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.9
- 作者:
Andres Meza;Francesco Restuccia;J. Oberg;Dominic Rizzo;R. Kastner - 通讯作者:
R. Kastner
iSonar: Software-defined Underwater Acoustic Networking for Amphibious Smartphones
iSonar:用于两栖智能手机的软件定义水下声学网络
- DOI:
10.1145/3148675.3148710 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Francesco Restuccia;Emrecan Demirors;T. Melodia - 通讯作者:
T. Melodia
Francesco Restuccia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesco Restuccia', 18)}}的其他基金
NeTS: Medium: Resilient-by-Design Data-Driven NextG Open Radio Access Networks
NeTS:媒介:弹性设计数据驱动的 NextG 开放无线电接入网络
- 批准号:
2312875 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Travel: NSF Student Travel Grant for ACM International Conference on Mobile Computing and Networking (ACM MobiCom)
旅行:美国国家科学基金会学生旅行补助金用于 ACM 国际移动计算和网络会议 (ACM MobiCom)
- 批准号:
2330220 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329013 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Continuing Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229472 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Reliable Task Offloading in Mobile Autonomous Systems Through Semantic MU-MIMO Control
合作研究:NeTS:小型:通过语义 MU-MIMO 控制实现移动自治系统中的可靠任务卸载
- 批准号:
2134973 - 财政年份:2021
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
相似国自然基金
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
加速器用大功率密度超高频铁基纳米晶合金设计及性能调控机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
CCF: SHF: CORE: Small: Towards Systematic Quality Control of Physically Unclonable Functions (PUFs)
CCF:SHF:CORE:小型:迈向物理不可克隆功能(PUF)的系统质量控制
- 批准号:
2244479 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CCF: SHF: Small: Transformer synthesis
CCF:SHF:小型:变压器综合
- 批准号:
2203399 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Continuing Grant
CCF:SHF:Small:NAND gate based integrated DNA circuits
CCF:SHF:Small:基于与非门的集成 DNA 电路
- 批准号:
2226021 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CISE Core: CCF: SHF: Small: Future-Proof Test Corpus Synthesis for Evolving Software
CISE 核心:CCF:SHF:小型:面向发展软件的面向未来的测试语料库合成
- 批准号:
2120955 - 财政年份:2021
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CCF:SHF: Small: Some New Class of Error Control Codes for VLSI and Computer Systems
CCF:SHF:小型:用于 VLSI 和计算机系统的一些新型错误控制代码
- 批准号:
2006571 - 财政年份:2020
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant