A Conference on Partial Differential Equations - Analytic and Geometric Aspects

偏微分方程会议 - 解析和几何方面

基本信息

项目摘要

The University of North Carolina (UNC) Department of Mathematics plans to host a week long conference entitled "A Conference on Partial Differential Equations - Analytic and Geometric Aspects" in Chapel Hill from July 16-20, 2012 relating to microlocal analysis and geometry in partial differential equations (PDE). This conference will bring together experts in the fields of microlocal and geometric analysis, which dramatically impact the study of partial differential equations, geometry, topology and spectral theory. Though such fields rarely interact in focused conferences, they often have an overlap of useful techniques and ideas that would allow for collaborations to make advancements in both analysis and geometry. In particular, the conference would bring together many experts whose insights into geodesic flow and geometry could dramatically inform and advance the University of North Carolina analysis group's efforts to understand the existence and dynamics of nonlinear bound states on manifolds, which have arisen in the studies of both geometry and dispersive equations. This project supports participation in the conference on Partial Differential Equations - Analytic and Geometric Aspects. Funds will be used for the travel and housing costs for speakers, graduate students, postdocs and junior faculty at U.S. universities without NSF support who would like to participate in the conference. This workshop will reflect the main areas of focus of the partial differential equations group at the University of North Carolina, which has grown around distinguished senior faculty member Michael Taylor, who has made fundamental contributions to PDE throughout his career, in particular helping to develop the topics of microlocal and geometric analysis in the study thereof. The group has wishes to bring in experts and students from around the world to discuss recent advances, in particular related to nonlinear partial differential equations on manifolds and applications. Such techniques have led to a surge in activity touching such areas as general relativity, fluid mechanics, and nonlinear optics. More details for the conference can be found athttp://www.math.psu.edu/mazzucat/uncconf2012/index.html
北卡罗来纳大学(UNC)数学系计划在2012年7月16日至20日,在教堂山举办一周的会议,题为“针对部分微分方程的会议 - 分析和几何方面的会议 - 分析和几何方面”,该会议涉及微局部分析和几何分析和几何学。微分方程(PDE)。这次会议将汇集微局部和几何分析领域的专家,这极大地影响了偏微分方程,几何,几何,拓扑和光谱理论的研究。尽管这样的领域很少在集中的会议上进行互动,但它们通常具有有用的技术和想法的重叠,这将使合作在分析和几何学上都取得进步。特别是,会议将汇集许多专家,他们对大地测量流和几何形状的见解可以极大地为北卡罗来纳大学分析小组的努力,以了解非线性国家对多种状态的存在和动态的努力。几何和分散方程。该项目支持参与偏微分方程的会议 - 分析和几何方面。资金将用于演讲者,研究生,博士后和美国大学初级教师的旅行和住房费用,而他们希望参加会议的NSF支持。该研讨会将反映北卡罗来纳大学局部分化方程组的重点主要领域,北卡罗来纳大学围绕着杰出的高级教师迈克尔·泰勒(Michael Taylor)成长,后者在整个职业生涯中为PDE做出了基本贡献在研究中,微局部和几何分析的主题。该小组希望吸引来自世界各地的专家和学生讨论最近的进步,特别是与多种流形和应用的非线性部分微分方程有关。 这种技术导致活动触及诸如一般相对论,流体力学和非线性光学的领域的激增。 会议的更多详细信息可以找到athttp://www.math.psu.edu/mazzucat/uncconf2012/index.html

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Marzuola其他文献

Jeremy Marzuola的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Marzuola', 18)}}的其他基金

Spectral Theory and Applications for Models with Localized or Boundary Defects
具有局部或边界缺陷模型的谱理论和应用
  • 批准号:
    2307384
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Algorithms and Analysis for Models in Materials Science, Fluids, and Probability
材料科学、流体和概率模型的算法和分析
  • 批准号:
    1909035
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Continuing Grant
A Conference on Waves, Spectral Theory, and Applications
波、谱理论及应用会议
  • 批准号:
    1536072
  • 财政年份:
    2015
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear PDE Models in Mathematical Physics and Experiment
职业:数学物理和实验中的非线性偏微分方程模型
  • 批准号:
    1352353
  • 财政年份:
    2014
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Continuing Grant
Nonlinear Interactions and Dynamics in Problems From Fluids and Optics
流体和光学问题中的非线性相互作用和动力学
  • 批准号:
    1312874
  • 财政年份:
    2013
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0703531
  • 财政年份:
    2007
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Fellowship Award

相似国自然基金

部分双曲微分同胚中的拓扑与度量性质的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
发展型偏微分方程组中基于部分观测数据的系数辨识问题
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
部分双曲系统的拓扑与遍历论性质
  • 批准号:
    11871120
  • 批准年份:
    2018
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目
部分双曲系统的持续传递性
  • 批准号:
    11701015
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
部分信息下带马尔科夫链的正倒向随机系统最优控制理论及其应用
  • 批准号:
    61573217
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
  • 批准号:
    2324706
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
CBMS Conference: Deep Learning and Numerical Partial Differential Equations
CBMS 会议:深度学习和数值偏微分方程
  • 批准号:
    2228010
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了