Collaborative Research: Pattern Transfer Nanomanufacturing with Magnetically-Recorded Nanotemplates

合作研究:利用磁记录纳米模板进行图案转移纳米制造

基本信息

  • 批准号:
    1130819
  • 负责人:
  • 金额:
    $ 22.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

The ultimate goal of this collaborative research project is to test the hypothesis that magnetic recording can be used to direct the assembly of nanomaterials into complex 2D and 3D structures, and offers a promising route towards rapid and low-cost nanomanufacturing. The approach is to use magnetic recording media (i.e. platters found in modern hard drives) to direct the assembly of magnetic nanoparticles. A thin polymeric film is then coated onto the surface, and the deposited particles are lifted off while maintaining this written pattern. This transformative approach to nanomanufacturing employs nanoscale forces from magnetically-recorded patterns to assemble nanoparticles from a carrier fluid into de-signed nanostructures on the surface of a disk drive platter. The nanoparticle assembly is then spin-coated with a polymer and the matrix is peeled from the disk surface, transferring the nanoscale patterns to a flexible, transparent film. While this concept has been demonstrated, key challenges to commercializing it remain. Control of this concept will be extended by understanding how the assembly depends on the raw nanomaterials: nanoparticle shape, size, magnetic moment, and surface functionalization, in addition to the kinetics of the fluidic assembly process, variances in nanoscale positioning, and the fundamental limits of the recording process. This collaborative project is structured to allow continuous feedback between process and raw materials to build stability needed for commercial launch. In addition, novel extensions will be explored that add functionality, including assembly of different nanoparticle species within a single layer, and combining multiple layers and films into more complex, nanostructured materials. To accomplish these goals the project is divided into three main task groups: 1. Nanoparticle synthesis and assembly interaction control, 2. Assembly and metrology below 100 nm size scales, and 3. Directed assembly of complex systems, plus an additional group focused on collaborative education and outreach. These components focus on overcoming key roadblocks to the technology's scalability, developing the tools for processing and process metrology, and creating novel, complex systems to increase commercial relevance.This project will build understanding of this undeveloped technology to assess and overcome the major hurdles to implementation in a manufacturing environment. By optimizing commercial magnetic recording for bottom-up nanostructure assembly, an innovative class of inexpensive techniques will be available to the wider nanotechnology community for manufacturing new devices, including optoelectronic components, novel biomaterials, and materials for future energy technologies. Given the scale and cost at which magnetic recording components are presently manufactured, the leverage to succeed in scaling this approach to commercial nanomanufacturing is tremendous. The opportunity to apply current technology to enable future manufacturing, combined with understanding the community structures which inhibit nano-commercialization, offers a unique and broad educational experience for the project researchers. Students at both USC and Clemson, the primary research universities in South Carolina, will participate through a recently piloted course that develops a technical and historical perspective on manufactured technologies, to foster innovation and create new ones.
该协作研究项目的最终目标是检验以下假设:磁记录可用于将纳米材料的组装引导到复杂的2D和3D结构中,并为快速和低成本的纳米制造提供了有希望的途径。 该方法是使用磁性记录介质(即在现代硬盘驱动器中发现的拼盘)来指导磁性纳米颗粒的组装。然后将薄的聚合物膜涂在表面上,并在保持此书面模式的同时抬起沉积的颗粒。 这种用于纳米制造的变革性方法采用了从磁性图案的纳米级力,从载流载流体将纳米颗粒组装到磁盘驱动盘表面上的nanostructures中。然后将纳米颗粒组件用聚合物旋转,并将基质从磁盘表面剥离,将纳米级图案转移到柔性,透明的膜中。尽管已经证明了这一概念,但仍将其商业化的关键挑战仍然存在。除了流体组装过程的动力学,纳米级定位方差以及记录过程的基本限制外,还将通过了解组件如何依赖组件依赖组件来扩展该概念的控制:纳米颗粒的形状,大小,磁矩和表面功能化。 该协作项目的结构是允许过程和原材料之间的持续反馈,以建立商业发布所需的稳定性。此外,还将探索新的扩展,以增加功能,包括单层内不同纳米颗粒物质的组装,并将多层和膜组合到更复杂的纳米结构材料中。为了实现这些目标,该项目分为三个主要任务组:1。纳米颗粒的合成和组装互动控制,2。组装和计量学以下100 nm尺寸尺寸低于100 nm的规模,以及3。指示的复杂系统组装,再加上一个专注于协作教育和外展活动的组。这些组成部分着重于克服技术的可扩展性,开发处理和处理计量的工具,并创建新颖的,复杂的系统来提高商业相关性。该项目将建立对这项未开发技术的理解,以评估和克服制造环境中实施的主要障碍。通过优化自下而上的纳米结构组件的商业磁记录,将为更广泛的纳米技术社区提供创新的廉价技术,用于制造新设备,包括光电组件,新型生物材料,新型生物材料和未来能源技术的材料。鉴于目前正在制造磁性记录组件的规模和成本,成功地扩展这种商业纳米制造方法的杠杆作用是巨大的。利用当前技术来实现未来制造的机会,再加上抑制纳米商业化的社区结构,为项目研究人员提供了独特而广泛的教育体验。南卡罗来纳州的主要研究大学的USC和克莱姆森的学生将通过最近试验的课程参与,该课程对制造技术的技术和历史观点发展,以促进创新并创造新知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olin Mefford其他文献

Olin Mefford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olin Mefford', 18)}}的其他基金

EAGER: Magnetically Induced Catalysts for Active and Selective CO2 Reduction under Mild Conditions
EAGER:在温和条件下主动选择性二氧化碳还原的磁感应催化剂
  • 批准号:
    2146591
  • 财政年份:
    2021
  • 资助金额:
    $ 22.4万
  • 项目类别:
    Standard Grant
Student Travel Scholarships for Telluride Science Research Meeting on ?Frontiers in Biomagnetic Particles IV,? in Telluride CO June 23-26, 2015.
碲化物科学研究会议“生物磁性粒子 IV 前沿”学生旅行奖学金
  • 批准号:
    1462064
  • 财政年份:
    2015
  • 资助金额:
    $ 22.4万
  • 项目类别:
    Standard Grant
Travel Scholarships for Frontiers in BioMagnetic Particles 2013
2013 年生物磁性粒子前沿旅行奖学金
  • 批准号:
    1248199
  • 财政年份:
    2012
  • 资助金额:
    $ 22.4万
  • 项目类别:
    Standard Grant
Symposium - Frontiers in BioMagnetic Particles II
研讨会 - 生物磁性粒子前沿 II
  • 批准号:
    1123052
  • 财政年份:
    2011
  • 资助金额:
    $ 22.4万
  • 项目类别:
    Standard Grant
Evaluation of Nanoparticle Behavior During Transitions from Engineered to Natural Systems
从工程系统向自然系统过渡期间纳米粒子行为的评估
  • 批准号:
    1057633
  • 财政年份:
    2010
  • 资助金额:
    $ 22.4万
  • 项目类别:
    Standard Grant
Symposium - ACS POLY - Bioactive Polymer and Polymer Surfaces
研讨会 - ACS POLY - 生物活性聚合物和聚合物表面
  • 批准号:
    1037544
  • 财政年份:
    2010
  • 资助金额:
    $ 22.4万
  • 项目类别:
    Standard Grant
Investigations of the Size Effects on the Relaxation Rates of Polymer Coated Magnetic Nanoparticles for Hyperthermia
热疗用聚合物包覆磁性纳米颗粒弛豫率的尺寸效应研究
  • 批准号:
    0907167
  • 财政年份:
    2009
  • 资助金额:
    $ 22.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

图案化电响应薄膜用于离子液体和水的绿色、可控分离研究
  • 批准号:
    22305026
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“类液润滑-超亲水”图案化PDMS分子刷设计及其长效水汽收集机理研究
  • 批准号:
    22305192
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
图案化PVA水凝胶通过物理-化学协同调控巨噬细胞极化促进糖尿病皮肤创面修复的研究
  • 批准号:
    82372528
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
用于心肌梗塞特异性miRNA检测的仿生多液相图案化界面材料及芯片研究
  • 批准号:
    22375016
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于界面微结构的半液态金属柔性可拉伸电极及其图案化机理研究
  • 批准号:
    62304150
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
  • 批准号:
    10722568
  • 财政年份:
    2023
  • 资助金额:
    $ 22.4万
  • 项目类别:
Evaluation of the neurovascular unit in the setting of pathogenesis and treatment of autosomal dominant Alzheimer disease
常染色体显性阿尔茨海默病发病机制和治疗中神经血管单位的评估
  • 批准号:
    10572223
  • 财政年份:
    2023
  • 资助金额:
    $ 22.4万
  • 项目类别:
Mechanisms of Neural Synchrony in the Medial Entorhinal Cortex
内侧内嗅皮层神经同步机制
  • 批准号:
    10751561
  • 财政年份:
    2023
  • 资助金额:
    $ 22.4万
  • 项目类别:
Collaborative Research: cis-Regulatory architecture of color pattern convergence
合作研究:颜色模式融合的顺式监管架构
  • 批准号:
    2242864
  • 财政年份:
    2023
  • 资助金额:
    $ 22.4万
  • 项目类别:
    Standard Grant
Collaborative Approach for Asian Americans, Native Hawaiians, and Pacific Islanders Research and Education (CARE) 2.0
亚裔美国人、夏威夷原住民和太平洋岛民研究与教育 (CARE) 2.0 合作方法
  • 批准号:
    10740342
  • 财政年份:
    2023
  • 资助金额:
    $ 22.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了