EAGER: Magnetically Induced Catalysts for Active and Selective CO2 Reduction under Mild Conditions

EAGER:在温和条件下主动选择性二氧化碳还原的磁感应催化剂

基本信息

  • 批准号:
    2146591
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Catalysis plays an essential role in facilitating fast and energy-efficient manufacturing of fuels and chemicals from raw feedstocks. Most fuels and chemicals are still derived from fossil fuel resources. However, significant research progress has been made in recent years exploring alternative, renewable and/or sustainable chemical processes, based on electrocatalysis, photocatalysis, and other electrically powered technologies such as microwave- and plasma-assisted catalysis. Following this trend, the project explores the feasibility of magnetically inductive catalysts for carbon dioxide (CO2) reduction to carbon monoxide (CO) under mild, energy-efficient reaction conditions. In addition to mitigating carbon emissions - in the form of CO2 from combustion sources such as power plants - the CO product can be used to manufacture a wide range of organic chemicals and hydrocarbon fuels via established downstream processes. The project extends prior catalysis research related to magnetic inductive heating through a convergent approach integrating nanoparticle technology developed for biomedical applications with both advanced experimental and theoretical methods of heterogeneous catalysis research. The NSF EAGER (EArly-concept Grant for Exploratory Research) funding mechanism is ideal for this study aimed at assessing the feasibility of novel technology that is risky, but potentially transformative in maintaining U.S. leadership in clean energy technology. Beyond the technical aspects, the project includes educational and outreach initiatives contributing to the education of K-12, undergraduate, and graduate students, with significant emphasis on broadening participation of individuals from underrepresented groups. The project builds on the inductive magnetic hysteresis caused by response of ferromagnetic materials to an alternating magnetic field. Since the heat is generated directly at the catalyst surface, it can be efficiently delivered to the catalytic species. Because of this, reactor feeds may not need to be heated, allowing operation at milder conditions than typically employed in thermal catalysis. While electricity must still be supplied to generate the magnetic field, the more efficient heat transfer creates an opportunity to significantly increase catalytic reactor efficiency by designing materials that are optimized for energy delivery and catalytic performance. The project integrates simulations and experiments to design, characterize, and evaluate magnetically inductive nanoparticles for the reverse water gas shift (RWGS) reaction. The project includes collaboration with Johnson Matthey to assess translational potential; for example, to facilitate fast light-off for automotive exhaust catalysts. The project also explores opportunities for creating a range of magnetite (Fe3O4) nanoparticles doped with other metals to tune catalyst reactivity and selectivity while maintaining efficient energy transfer. To that end, the project will include a modeling component that predicts magnetic properties and their relationship to catalyst performance. In addition, the alternating magnetic field associated with the inductive heating creates opportunities for dynamic catalysis. Potential risks associated with the technology will also be addressed, including catalyst composition and structure limitations (e.g., magnetic properties as a function of particle size and composition), temperature limitations (e.g., phase stability under reaction conditions), and oxidative stability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
催化在促进生产原料的燃料和化学物质的快速和节能生产中起着至关重要的作用。 大多数燃料和化学物质仍然来自化石燃料资源。 但是,近年来已经取得了重大的研究进展,以探索基于电催化,光催化以及其他电力技术的替代性,可再生和/或可持续化学过程,例如微波炉和血浆辅助催化。 随着这一趋势,该项目探讨了在轻度,节能的反应条件下,磁性感应催化剂对二氧化碳(CO2)还原为一氧化碳(CO)的可行性。 除了减轻碳排放量 - 以燃烧源(例如发电厂)的二氧化碳的形式,该CO产品还可通过已建立的下游工艺来用于生产广泛的有机化学物质和碳氢化合物燃料。 该项目通过将用于生物医学应用开发的纳米颗粒技术与高级实验和理论方法的异质催化研究相关的纳米颗粒技术扩展了与磁性电感加热有关的先前催化研究。 NSF急切的(探索性研究的早期概念赠款)资金机制非常适合这项研究,旨在评估具有风险的新型技术的可行性,但在维持美国在清洁能源技术方面的领导才能有潜在的变革性。 除技术方面外,该项目还包括为K-12,本科和研究生教育做出贡献的教育和外展计划,并非常重视扩大人数不足的群体的个人的参与。该项目建立在由铁磁材料对交替磁场的响应引起的电感磁磁滞。 由于热量是直接在催化剂表面产生的,因此可以有效地输送到催化物种中。 因此,可能不需要加热反应堆饲料,可以在温和的条件下进行操作,而不是热催化中通常使用的。虽然仍必须提供电力来产生磁场,但更有效的传热效率会通过设计用于能源输送和催化性能的材料来显着提高催化反应器效率的机会。 该项目集成了模拟和实验,以设计,表征和评估磁性电感纳米颗粒的反向水气(RWGS)反应。 该项目包括与Johnson Matthey合作评估翻译潜力;例如,为汽车排气催化剂促进快速发光。 该项目还探索了创建一系列磁铁矿(FE3O4)纳米颗粒的机会,这些纳米颗粒与其他金属掺杂,以调节催化剂的反应性和选择性,同时保持有效的能量传递。 为此,该项目将包括一个预测磁性特性及其与催化剂性能的关系的建模组件。 此外,与电感加热相关的交替磁场为动态催化带来了机会。 还将解决与技术相关的潜在风险,包括催化剂组成和结构限制(例如,磁性特性是粒度和组成的函数),温度限制(例如,在反应条件下的相位稳定性)和氧化稳定性。该奖项反映了NSF的法定任务,并通过评估智能委员会进行了评估,并通过基金会的范围进行了评估和广泛的影响。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainties in the reactivity of atomically dispersed catalytic metal: Can any single-atom catalyst work like a charm?
  • DOI:
    10.1016/j.checat.2023.100735
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ewa Chukwu;Ming Yang
  • 通讯作者:
    Ewa Chukwu;Ming Yang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olin Mefford其他文献

Olin Mefford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olin Mefford', 18)}}的其他基金

Student Travel Scholarships for Telluride Science Research Meeting on ?Frontiers in Biomagnetic Particles IV,? in Telluride CO June 23-26, 2015.
碲化物科学研究会议“生物磁性粒子 IV 前沿”学生旅行奖学金
  • 批准号:
    1462064
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Travel Scholarships for Frontiers in BioMagnetic Particles 2013
2013 年生物磁性粒子前沿旅行奖学金
  • 批准号:
    1248199
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Symposium - Frontiers in BioMagnetic Particles II
研讨会 - 生物磁性粒子前沿 II
  • 批准号:
    1123052
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Pattern Transfer Nanomanufacturing with Magnetically-Recorded Nanotemplates
合作研究:利用磁记录纳米模板进行图案转移纳米制造
  • 批准号:
    1130819
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Evaluation of Nanoparticle Behavior During Transitions from Engineered to Natural Systems
从工程系统向自然系统过渡期间纳米粒子行为的评估
  • 批准号:
    1057633
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Symposium - ACS POLY - Bioactive Polymer and Polymer Surfaces
研讨会 - ACS POLY - 生物活性聚合物和聚合物表面
  • 批准号:
    1037544
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Investigations of the Size Effects on the Relaxation Rates of Polymer Coated Magnetic Nanoparticles for Hyperthermia
热疗用聚合物包覆磁性纳米颗粒弛豫率的尺寸效应研究
  • 批准号:
    0907167
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

类自旋轨道矩诱导铁基磁性材料的自旋调控及其电催化特性
  • 批准号:
    22301009
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
磁性诱导Fe3O4纳米线跨膜取向排列构建短程直通纳米通道
  • 批准号:
    22308042
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
结构光场诱导力探测纳米结构近场光磁性的新机理与新技术研究
  • 批准号:
    62375098
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
超临界二氧化碳诱导氧化钼/石墨炔异质结界面耦合调控磁性机制
  • 批准号:
    22305226
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Slit/Robo信号调控Netrin-1/DCC通路在棒状磁性粒子诱导牵张激活神经突起导向生长中的功能和机制研究
  • 批准号:
    32371374
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目

相似海外基金

elucidation of magnetic field induced quantum phases and development of kagome-lattice antiferromagnets in doubly ordered pyrochlore
双序烧绿石中磁场诱导量子相的阐明和戈薇晶格反铁磁体的开发
  • 批准号:
    23H01123
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Characteristic control based on quantitative evaluation of nano-defect and defect-induced strain field in functional materials
基于功能材料纳米缺陷和缺陷诱发应变场定量评估的特性控制
  • 批准号:
    23KK0087
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
  • 批准号:
    10062336
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
自己誘発嘔吐を伴う摂食障害に対する反復性経頭蓋磁気刺激療法
重复经颅磁刺激疗法治疗饮食失调伴自诱发呕吐
  • 批准号:
    23K14805
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of stress-induced tunnel magnetic functional material by dielectric-magnetic metal nanocomposite thin film.
介电-磁性金属纳米复合薄膜应力诱导隧道磁性功能材料的开发。
  • 批准号:
    23H01678
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了