FRG: Development and Validation of Novel Computational Tools for Modeling the Growth and Self-Assembly of Crystalline Nanostructures

FRG:用于模拟晶体纳米结构的生长和自组装的新型计算工具的开发和验证

基本信息

项目摘要

TECHNICAL SUMMARY:This award supports theoretical research and educational activities in computational materials science, with a focus on the controlled growth of nanostructured materials.Nanostructured materials, including semiconductor quantum dots and nanowires, hold the promise to yield revolutionary new technologies. The realization of this promise has been hindered to date by the challenges inherent in reproducibly synthesizing and assembling arrays of such nanostructures with controlled morphologies and compositions. Computational modeling is essential for understanding the complex fundamental processes underlying nanostructure growth and self-assembly. However, current state-of-the-art computational methods are not well suited to such studies because of the difficulty in accounting for the atomistic processes that control growth, while simulating over the larger length and time scales associated with self-assembly. The PIs, three materials scientists and a mathematician, propose to develop a new computational methodology that addresses these issues, in order to investigate quantum-dot formation in thin-film heteroepitaxy and nanowire growth mediated by liquid catalysts. This multidisciplinary project addresses the challenge of understanding multiscale phenomena associated with the formation of nanostructures by exploiting recent developments in phase field crystal (PFC) models, which resolve atomic spatial scales on diffusive time scales. The PFC method naturally incorporates elastic/plastic deformations and crystalline defects, and has already been used to simulate interfacial evolution during solid-liquid phase transitions. The team will develop a new PFC-based computational methodology for modeling solid-vapor, liquid-vapor and faceted solid-liquid interfaces, which are commonly present during the growth of crystalline nanostructures. The models will be parameterized and validated with the aid of atomistic simulations and experimental results. Amplitude/phase equations similar to traditional phase field models will be derived to allow larger domains to be simulated. This will reveal how atomistic features and processes affect morphological evolution at larger scales. We will develop new efficient numerical algorithms that will enable simulations of large 3D systems, as well as novel tools for data extraction and visualization. These tools will advance the field of computational materials science by providing a framework for the computational discovery of the fundamental mechanisms underlying synthesis and assembly of nanostructures.Courses on crystal growth for high school students are planned as part of the California State Summer School for Mathematics and Science at UC Irvine, along with additional outreach activities at the Ann Arbor Hands-On Museum. These activities will help develop the future generation of mathematicians, scientists and engineers. Graduate students will receive interdisciplinary training and will present their findings at conferences, enhancing their educational experiences. Furthermore, a symposium on the PFC approach will be organized. In collaboration with the National Institute of Standards and Technology, a FiPy version of the PFC codes will be developed and will be disseminated through their website for use in education and research.NON-TECHNICAL SUMMARY:This award supports theoretical research and educational activities in computational materials science, with a focus on the controlled growth of nanostructured materials.Artificial materials composed of building blocks on the scale of some ten thousand times smaller than the width of a human hair but still larger than an atom can have unique properties and capabilities that differ dramatically from bulk crystalline materials. The properties of these nanostructured materials and their lean tiny cousins, nanostructures, can be controlled through the way the building blocks are arranged; they may even arrange themselves through a process of self-assembly. Nanostructured materials including semiconductor quantum dots and nanowires, hold the promise to yield revolutionary new technologies. Realizing this promise has been hindered by difficulties in controlling their structures and compositions. The use of computers to model nanostructures and nanostructured materials is essential for understanding the complex fundamental processes underlying nanostructure growth and self-assembly. However, current state-of-the-art computational methods are not well suited to such studies because of the difficulty in accounting for the atomic scale processes that control growth, while simulating over the larger length and time scales associated with self-assembly, involving the organization of the building blocks. This grant will support the development of a new computational methodology that addresses these issues, in order to investigate quantum-dot formation and nanowire growth. The team will also develop new efficient numerical algorithms that will enable simulations of large three-dimensional systems, as well as novel tools for data extraction and visualization. These tools will advance the field of computational materials science by providing a framework for computational discovery of the fundamental mechanisms underlying synthesis and assembly of nanostructures.Courses on crystal growth for high school students are proposed as part of the California State Summer School for Mathematics and Science at UC Irvine, and additional outreach activities are planned at the Ann Arbor Hands-On Museum. These activities will help develop the future generation of mathematicians, scientists and engineers. Graduate students will receive interdisciplinary training and will present their findings at conferences, enhancing their educational experiences. Furthermore, a symposium on aforementioned computational techniques will be organized. In collaboration with the National Institute of Standards and Technology, a Python-script version of the simulation software will be developed and will be disseminated through their website for use in education and research.
技术摘要:该奖项支持计算材料科学中的理论研究和教育活动,重点是纳米结构材料的受控增长。纳米结构材料,包括半导体量子点和纳米线,有望产生革命性的新技术。迄今为止,由于具有控制的形态和组成的这种纳米结构的可重复合成和组装阵列固有的挑战,这一诺言的实现受到了阻碍。计算建模对于理解纳米结构生长和自组装的基本过程的复杂基本过程至关重要。但是,由于难以计算控制增长的原子过程,同时模拟与自组装相关的较大长度和时间尺度,因此当前的最新计算方法不适合此类研究。 PIS是三位材料科学家和一名数学家,提议开发一种解决这些问题的新计算方法,以研究薄膜杂型杂质中的量子点形成和液体催化剂介导的纳米线生长。该多学科项目通过利用相位场晶体(PFC)模型中的最新发展来解决与纳米结构形成相关的多尺度现象的挑战,该模型可以解决扩散时间尺度上的原子空间量表。 PFC方法自然结合了弹性/塑性变形和晶体缺陷,并且已经用于模拟固液相变过的界面进化。该团队将开发一种新的基于PFC的计算方法,用于建模固体蒸气,液体蒸气和固定液液体接口,这些界面通常是在结晶纳米结构的生长过程中。这些模型将在原子模拟和实验结果的帮助下进行参数化和验证。将得出与传统相位场模型相似的振幅/相位方程,以允许模拟较大的域。这将揭示原子特征和过程如何影响较大尺度的形态演化。我们将开发新的有效的数值算法,这些算法将启用大型3D系统的模拟,以及用于数据提取和可视化的新工具。这些工具将通过为计算纳米结构的综合和组装的基本机制提供一个框架来推动计算材料科学领域。计划在UC Irvine的加利福尼亚州立大学数学和科学的一部分中为高中生的水晶增长提供额外的纳米结构。这些活动将有助于发展未来的数学家,科学家和工程师。研究生将接受跨学科培训,并将在会议上提出他们的发现,从而增强他们的教育经验。此外,将组织PFC方法上的研讨会。 通过与国家标准技术研究所合作,将开发PFC代码的FIPY版本,并将通过其网站进行分解,以用于教育和研究中。没有技术摘要:该奖项支持理论研究和教育活动,以计算材料科学,重点是纳入人工材料的受控材料,该材料的范围更大。原子可以具有独特的特性和功能,这些特性和功能与大量晶体材料截然不同。这些纳米结构材料的特性及其瘦小的堂兄纳米结构可以通过布置构建块的方式来控制;他们甚至可以通过自我组装过程来安排自己。包括半导体量子点和纳米线在内的纳米结构材料,承诺产生革命性的新技术。在控制其结构和组成方面的困难使人们意识到这一诺言受到了阻碍。 使用计算机对纳米结构和纳米结构材料进行建模,这对于理解纳米结构生长和自组装的复杂基本过程至关重要。但是,由于难以在控制增长的原子量表过程中,同时模拟与自组装相关的较大长度和时间尺度,涉及构建基金会的组织。该赠款将支持一种解决这些问题的新计算方法论,以研究量子点形成和纳米线增长。该团队还将开发新的有效的数值算法,这些算法将启用大型三维系统的模拟,以及用于数据提取和可视化的新型工具。 These tools will advance the field of computational materials science by providing a framework for computational discovery of the fundamental mechanisms underlying synthesis and assembly of nanostructures.Courses on crystal growth for high school students are proposed as part of the California State Summer School for Mathematics and Science at UC Irvine, and additional outreach activities are planned at the Ann Arbor Hands-On Museum.这些活动将有助于发展未来的数学家,科学家和工程师。研究生将接受跨学科培训,并将在会议上提出他们的发现,从而增强他们的教育经验。此外,将组织关于上述计算技术的研讨会。 将与国家标准技术研究所合作,将开发模拟软件的Python-Script版本,并将通过其网站传播以供教育和研究中使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katsuyo Thornton其他文献

Phase-Field Modeling and Simulations of Lipid Membranes Coupling Composition with Membrane Mechanical Properties
  • DOI:
    10.1016/j.bpj.2009.12.1536
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chloe M. Funkhouser;Francisco J. Solis;Katsuyo Thornton
  • 通讯作者:
    Katsuyo Thornton
Enhancing polycrystalline-microstructure reconstruction from X-ray diffraction microscopy with phase-field post-processing
  • DOI:
    10.1016/j.scriptamat.2024.116228
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marcel Chlupsa;Zachary Croft;Katsuyo Thornton;Ashwin J. Shahani
  • 通讯作者:
    Ashwin J. Shahani
Effects of interleaflet coupling on the morphologies of multicomponent lipid bilayer membranes.
叶间耦合对多组分脂质双层膜形态的影响。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    C. M. Funkhouser;Michael Mayer;F. Solis;Katsuyo Thornton
  • 通讯作者:
    Katsuyo Thornton
Supplemental Information: Origin of Rapid Delithiation In Secondary Particles Of LiNi 0.8 Co 0.15 Al 0.05 O 2 and LiNi y Mn z Co 1 – y – z O 2 Cathodes
补充信息:LiNi 0.8 Co 0.15 Al 0.05 O 2 和 LiNi y Mn z Co 1 – y – z O 2 阴极二次颗粒快速脱锂的起源
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Co;Al;LiNi y Mn z Co;Cathodes Mark;Wolfman;Brian M. May;Vishwas Goel;Sicen Du;Young‐Sang Yu;N. Faenza;Nathalie Pereira;K. Wiaderek;Ruqing Xu;Jiajun Wang;G. Amatucci;Katsuyo Thornton;Jordi Cabana
  • 通讯作者:
    Jordi Cabana
Origin of broad luminescence from site‐controlled InGaN nanodots fabricated by selective‐area epitaxy
选区外延制备的位点控制 InGaN 纳米点的宽发光起源
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Lee;L. Aagesen;Katsuyo Thornton;P. Ku
  • 通讯作者:
    P. Ku

Katsuyo Thornton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katsuyo Thornton', 18)}}的其他基金

Summer School for Integrated Computational Materials Education
综合计算材料教育暑期学校
  • 批准号:
    2213806
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Elements: Data Driven Autonomous Thermodynamic and Kinetic Model Builder for Microstructural Simulations
元素:用于微观结构模拟的数据驱动自主热力学和动力学模型构建器
  • 批准号:
    2209423
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Probing the Evolution of Granular Microstructures during Dynamic Annealing via Integrated Three-Dimensional Experiments and Simulations
通过集成三维实验和模拟探讨动态退火过程中颗粒微观结构的演变
  • 批准号:
    2104786
  • 财政年份:
    2021
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Harnessing Abnormal Grain Growth for the Production of Single Crystals
利用异常晶粒生长来生产单晶
  • 批准号:
    2003719
  • 财政年份:
    2020
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: An Experimental and Theoretical Study of the Microstructural and Electrochemical Stability of Solid Oxide Cells
GOALI:协作研究:固体氧化物电池微观结构和电化学稳定性的实验和理论研究
  • 批准号:
    1912151
  • 财政年份:
    2019
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research: Integrated Computational and Experimental Studies of Solid Oxide Fuel Cell Electrode Structural Evolution and Electrochemical Characteristics
合作研究:固体氧化物燃料电池电极结构演化和电化学特性的综合计算和实验研究
  • 批准号:
    1506055
  • 财政年份:
    2015
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
FRG: Predictive Computational Modeling of Two-Dimensional Materials Beyond Graphene: Defects and Morphologies
FRG:石墨烯以外的二维材料的预测计算模型:缺陷和形态
  • 批准号:
    1507033
  • 财政年份:
    2015
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research: Summer School for Integrated Computational Materials Education
合作研究:综合计算材料教育暑期学校
  • 批准号:
    1410461
  • 财政年份:
    2014
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Summer School for Integrated Computational Materials Education
综合计算材料教育暑期学校
  • 批准号:
    1058314
  • 财政年份:
    2010
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: Three-Dimensional Microstructural and Chemical Mapping of Solid Oxide Fuel Cell Electrodes: Processing, Structure, Stability, and Electrochemistry
合作研究:固体氧化物燃料电池电极的三维微观结构和化学测绘:加工、结构、稳定性和电化学
  • 批准号:
    0907030
  • 财政年份:
    2009
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant

相似国自然基金

“双循环”发展新格局下企业研发模式选择对创新绩效的影响研究:理论和经验证据
  • 批准号:
    72373062
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
结合深度学习和分子模拟的PD-1/PD-L1相互作用小分子抑制剂设计新策略发展及实验验证
  • 批准号:
    22173038
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
外资进入和贸易“高质量”发展:理论基础、经验证据和机制探讨
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
一个随机多云对流参数化方案的发展与验证
  • 批准号:
    42075152
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
空气污染对长期人力资本积累与经济发展质量的影响研究:理论机制、经验证据与政策评估
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
  • 批准号:
    10748341
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
Development and validation of a highly novel teleassistance enabled navigational aid for blind persons.
开发和验证了一种高度新颖的远程协助,为盲人提供导航帮助。
  • 批准号:
    10093029
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Collaborative R&D
Research Initiation: Development and Initial Validation of an Engineering Empathy Scale
研究启动:工程同理心量表的开发和初步验证
  • 批准号:
    2306271
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Development and Validation of a Combined Risk Prediction Model for Childhood Obesity Using Cord Blood Genomics and Epigenomics
利用脐带血基因组学和表观基因组学开发和验证儿童肥胖联合风险预测模型
  • 批准号:
    23H02880
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了