Elements: Data Driven Autonomous Thermodynamic and Kinetic Model Builder for Microstructural Simulations

元素:用于微观结构模拟的数据驱动自主热力学和动力学模型构建器

基本信息

项目摘要

Materials with improved properties can dramatically impact sustainability, human welfare, and national prosperity. As an example, a stronger material can reduce the weight of vehicles and can therefore reduce energy consumption and pollution. Properties of materials frequently depend on their microstructures (features in materials at scales of one micrometer to hundreds of micrometers). Thermodynamic free energy (providing the driving force for evolution) and kinetic parameters (providing how quickly the evolution can occur) together govern how a material evolves at the microscale. This project develops algorithms and software that automate the extraction of the thermodynamics and kinetic information using artificial intelligence to enable simulation of microstructure evolution for complex mixtures of metals. The AI-enabled Microstructure Model BuildER (AMMBER) harvests and harnesses data ranging from first-principles calculations, experimental micrographs and associated natural language text, and thermodynamic databases, as well as custom user input. It then produces input to microstructure evolution models that facilitate the fundamental understanding needed to gain control of the microstructure and resulting material properties. The demonstration of its capability is planned for commercially important alloys (nickel-aluminum-based and aluminum-copper-based alloys), as well as the corresponding high-entropy alloys (alloys with five or more components with near equimolar fractions). AMMBER contributes to the software infrastructure for simulation-based material discovery and development within the context of the Material Genome Initiative. Training activities, including training workshops for the community to learn about the software and the theory behind it and integration into the undergraduate and graduate thermodynamics and kinetics courses, provide opportunities for education and professional development. Nickel-aluminum-based and aluminum-copper-based alloys are key materials in the aerospace and automobile industries, and thus the results are expected to have a direct impact on manufacturing. The goal of this project is to develop an artificial intelligence framework for the autonomous determination of input parameters for phase-field models based on a variety of data sources to establish constraints on the model parameters. The AI-enabled Microstructure Model BuildER (AMMBER) leverages automated data-stream pipelines to collect, curate, and tabulate disparate data sources spanning first-principles calculations, experimental micrographs, and associated natural language text, thermodynamic databases, and custom user input. Then, advanced optimization algorithms iteratively optimize phase-field parameters such that the resulting models reproduce known microstructural characteristics (e.g., the phase fraction and characteristic length scale as a function of time). These models can then be used to simulate the microstructural evolution of materials over a range of conditions that are relevant to engineering and manufacturing. The demonstration of AMMBER involves commercially important Ni-Al-based and Al-Cu-based alloys, some of which contain more than five components, leading to a complicated high-dimensional parameter space in which thermodynamic and kinetic model parameters must be optimized. The application to high-entropy alloys, which contain near equimolar amounts of five or more components, provides a ground for new scientific discoveries. By automating the time-consuming initial model parameterization, AMMBER reduces the human bottleneck of materials modeling and paves the way to increased throughput of phase-field simulations. AMMBER complements existing Materials Genome Initiative (MGI) efforts, and it leverages and integrates into existing computational materials research communities built around tools such as open-source phase-field software (PRISMS-PF, MOOSE), an integrated computational materials engineering framework (PRISMS), CALPHAD tools (ESPEI, Thermo-Calc), and a dissemination platform (nanoHUB). The training workshops and integration of the computational tools and research findings into classrooms facilitate community interaction and engagement. Ni-Al-based and Al-Cu-based alloys are key materials in the aerospace and automobile industries, and thus the results are expected to have a direct impact on manufacturing.This proposal receives funds through the Office of Advanced Cyberinfrastructure in the Computer and Information Science and Engineering Directorate and the Division of Materials Research in the Mathematical and Physical Sciences Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有改善性质的材料会极大地影响可持续性,人类福利和国家繁荣。例如,更强大的材料可以减轻车辆的重量,因此可以减少能耗和污染。材料的性能经常取决于它们的微观结构(材料的特征在一个微米的尺度到数百微米)。热力学自由能(提供进化的驱动力)和动力学参数(提供了进化的速度)共同控制材料如何在微观尺度上进化。该项目开发了算法和软件,可以使用人工智能自动化热力学和动力学信息的提取,以启用微观结构演化的模拟金属复杂混合物。 AI支持的微观结构模型构建器(AMMBER)收获和利用数据,从第一原理计算,实验显微照片和相关的自然语言文本以及热力学数据库以及自定义用户输入。然后,它产生了微观结构演化模型的输入,这些模型促进了控制微观结构和产生的材料特性所需的基本理解。它的能力的演示计划用于商业上重要的合金(基于镍铝的和铝 - 铜的合金),以及相应的高渗透合金(具有五个或更多含量具有近乎等摩尔级数的合金的合金)。 Ammber为在材料基因组计划的背景下为基于仿真的材料发现和开发的软件基础架构做出了贡献。培训活动,包括社区的培训研讨会,以了解该软件及其背后的理论,并将其整合到本科和研究生的热力学和动力学课程中,为教育和专业发展提供了机会。基于镍铝和基于铝的合金是航空航天和汽车行业的关键材料,因此预计结果将对制造业产生直接影响。 该项目的目的是开发一个人工智能框架,以根据各种数据源自动确定相位模型的输入参数,以建立对模型参数的约束。 AI支持的微观结构模型构建器(AMMBER)利用自动数据流管道来收集,策划和制表不同的数据源,这些数据源涵盖了第一原理计算,实验显微照片以及相关的自然语言文本,热力学数据库和自定义用户的输入。然后,高级优化算法迭代优化相位场参数,以使所得模型重现已知的微观结构特征(例如,相位分数和特征长度比例随时间的函数)。然后,这些模型可用于模拟与工程和制造相关的一系列条件中材料的微观结构演变。 AMMBER的演示涉及商业上重要的基于Ni-Al的基于AL-CU的合金,其中一些包含五个以上的组件,导致必须优化热力学和动力学模型参数的复杂高维参数空间。 高渗透合金的应用含有接近等摩尔量的五个或更多组件,为新的科学发现提供了基础。通过自动化时间耗时的初始模型参数化,Ammber减少了材料建模的人类瓶颈,并为增加相位模拟的吞吐量铺平了道路。 Ammber补充了现有的材料基因组计划(MGI)的工作,并且它利用并集成到围绕诸如开源相相软件(Prisms-PF,Moose)等工具(综合计算材料工程框架(PRISMS),CALPHAD工具),Calphad工具(ESPEI,Thermo-Calc)和Aneemaub(NanoHub)(Nanohohub)等工具(Prisms-PF,Moose),诸如开源相相软件(PRISMS-PF,MOOSE)构建的现有计算材料研究社区。培训研讨会以及计算工具和研究发现中的整合到课堂上,有助于社区互动和参与。 基于NI-AL的基于Ni-Al-Cu的合金是航空航天和汽车行业的关键材料,因此预计结果将直接影响制造业。该提案通过计算机和信息科学和工程局的高级网络基础设施办公室获得资金使用基金会的智力优点和更广泛的影响评估标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katsuyo Thornton其他文献

Phase-Field Modeling and Simulations of Lipid Membranes Coupling Composition with Membrane Mechanical Properties
  • DOI:
    10.1016/j.bpj.2009.12.1536
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chloe M. Funkhouser;Francisco J. Solis;Katsuyo Thornton
  • 通讯作者:
    Katsuyo Thornton
Enhancing polycrystalline-microstructure reconstruction from X-ray diffraction microscopy with phase-field post-processing
  • DOI:
    10.1016/j.scriptamat.2024.116228
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marcel Chlupsa;Zachary Croft;Katsuyo Thornton;Ashwin J. Shahani
  • 通讯作者:
    Ashwin J. Shahani
Effects of interleaflet coupling on the morphologies of multicomponent lipid bilayer membranes.
叶间耦合对多组分脂质双层膜形态的影响。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    C. M. Funkhouser;Michael Mayer;F. Solis;Katsuyo Thornton
  • 通讯作者:
    Katsuyo Thornton
Supplemental Information: Origin of Rapid Delithiation In Secondary Particles Of LiNi 0.8 Co 0.15 Al 0.05 O 2 and LiNi y Mn z Co 1 – y – z O 2 Cathodes
补充信息:LiNi 0.8 Co 0.15 Al 0.05 O 2 和 LiNi y Mn z Co 1 – y – z O 2 阴极二次颗粒快速脱锂的起源
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Co;Al;LiNi y Mn z Co;Cathodes Mark;Wolfman;Brian M. May;Vishwas Goel;Sicen Du;Young‐Sang Yu;N. Faenza;Nathalie Pereira;K. Wiaderek;Ruqing Xu;Jiajun Wang;G. Amatucci;Katsuyo Thornton;Jordi Cabana
  • 通讯作者:
    Jordi Cabana
Origin of broad luminescence from site‐controlled InGaN nanodots fabricated by selective‐area epitaxy
选区外延制备的位点控制 InGaN 纳米点的宽发光起源
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Lee;L. Aagesen;Katsuyo Thornton;P. Ku
  • 通讯作者:
    P. Ku

Katsuyo Thornton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katsuyo Thornton', 18)}}的其他基金

Summer School for Integrated Computational Materials Education
综合计算材料教育暑期学校
  • 批准号:
    2213806
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Probing the Evolution of Granular Microstructures during Dynamic Annealing via Integrated Three-Dimensional Experiments and Simulations
通过集成三维实验和模拟探讨动态退火过程中颗粒微观结构的演变
  • 批准号:
    2104786
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Harnessing Abnormal Grain Growth for the Production of Single Crystals
利用异常晶粒生长来生产单晶
  • 批准号:
    2003719
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: An Experimental and Theoretical Study of the Microstructural and Electrochemical Stability of Solid Oxide Cells
GOALI:协作研究:固体氧化物电池微观结构和电化学稳定性的实验和理论研究
  • 批准号:
    1912151
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: Integrated Computational and Experimental Studies of Solid Oxide Fuel Cell Electrode Structural Evolution and Electrochemical Characteristics
合作研究:固体氧化物燃料电池电极结构演化和电化学特性的综合计算和实验研究
  • 批准号:
    1506055
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
FRG: Predictive Computational Modeling of Two-Dimensional Materials Beyond Graphene: Defects and Morphologies
FRG:石墨烯以外的二维材料的预测计算模型:缺陷和形态
  • 批准号:
    1507033
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: Summer School for Integrated Computational Materials Education
合作研究:综合计算材料教育暑期学校
  • 批准号:
    1410461
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
FRG: Development and Validation of Novel Computational Tools for Modeling the Growth and Self-Assembly of Crystalline Nanostructures
FRG:用于模拟晶体纳米结构的生长和自组装的新型计算工具的开发和验证
  • 批准号:
    1105409
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Summer School for Integrated Computational Materials Education
综合计算材料教育暑期学校
  • 批准号:
    1058314
  • 财政年份:
    2010
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Three-Dimensional Microstructural and Chemical Mapping of Solid Oxide Fuel Cell Electrodes: Processing, Structure, Stability, and Electrochemistry
合作研究:固体氧化物燃料电池电极的三维微观结构和化学测绘:加工、结构、稳定性和电化学
  • 批准号:
    0907030
  • 财政年份:
    2009
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

物理-数据混合驱动的复杂曲面多模态视觉检测理论与方法
  • 批准号:
    52375516
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数据-机理协同驱动降阶模型的质子交换膜燃料电池多物理场孪生
  • 批准号:
    52306112
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复杂荷载下热活化煤矸石混凝土数据驱动细观损伤本构模型研究
  • 批准号:
    52304079
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据驱动下双记忆混合控制船舶非线性耦合运动的随机动力学研究
  • 批准号:
    12372033
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
数据驱动的人机协同订单拣选系统建模与优化
  • 批准号:
    72372088
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

HERV proteogenomics of narcotic-driven HIV latency
麻醉药驱动的 HIV 潜伏期的 HERV 蛋白质基因组学
  • 批准号:
    10675341
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
  • 批准号:
    10940417
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Collaborative Research: Elements: Phonon Database Generation, Analysis, and Visualization for Data Driven Materials Discovery
协作研究:要素:数据驱动材料发现的声子数据库生成、分析和可视化
  • 批准号:
    2311202
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Mechanisms of myeloid cell driven pancreatic plasticity and carcinogenesis
骨髓细胞驱动胰腺可塑性和致癌机制
  • 批准号:
    10607213
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
  • 批准号:
    10675944
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了