Groups, Arithmetic, and Monodromy
群、算术和单数
基本信息
- 批准号:1101424
- 负责人:
- 金额:$ 15.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I propose to study the monodromy of Galois representations arising from cohomology, both to prove that it is generally as large as possible, and to use it to attack the inverse Galois problem for l-adic Lie groups. Such inverse problems are connected with deformation theory of Galois representations, and I propose also to investigate analogous problems in the deformation theory of representations of discrete 1-relator groups. Such representations are parametrized by the identity fiber of the word map associated to a given relation, and I propose further to study the geometry of such word maps more broadly, with applications to group theory. In a different direction, I intend to study the inverse Galois problem for Mordell-Weil groups and related questions in field arithmetic.Groups are the possible types of symmetry in pure and applied mathematics. In nature, groups very often arise in the study of "monodromy". The idea of monodromy gives one a common framework for considering a wide range of apparently quite different questions. For example: what happens to the solutions of a differential equation as they are followed around singular points back to their starting points? What are the possible symmetries of the number systems generated by coordinates of special points on curves? What are the possible states of a quantum computer obtainable by a sequence of machine operations? I propose to study groups, both to better understand their internal structure and, in the case of monodromy groups, to gain insight into the geometries and number systems which give rise to them.
我建议研究源自同谋引起的Galois表示的单肌,以证明它通常尽可能大,并使用它来攻击L-ADIC LIE群体的逆Galois问题。这种反问题与GALOIS表示的变形理论有关,我还建议研究离散1-弹簧组表示形式的变形理论中的类似问题。通过与给定关系相关的单词映射的身份纤维进行了参数,我建议进一步研究此类单词地图的几何形状,并应用于组理论。 在不同的方向上,我打算研究Mordell-Weil组的逆向GALOIS问题,以及田间算术中的相关问题。组是纯数学和应用数学中可能的对称性类型。 在本质上,群体经常出现在“单肌”的研究中。 单肌的想法为一个普遍考虑了各种各样的问题而言,这是一个共同的框架。 例如:差异方程式的解决方案会发生什么,因为它们围绕着奇异点回到了起点?曲线特殊点坐标产生的数字系统的可能对称性是什么? 可以通过一系列机器操作获得的量子计算机的可能状态是什么? 我建议研究小组,以更好地了解它们的内部结构,也是关于单构群的组,以深入了解产生它们的几何和数量系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Larsen其他文献
CLEP_A_310795 477..500
CLEP_A_310795 477..500
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Bente Mertz Nørgård;Laura Catalini;Line Riis Jølving;Michael Larsen;Sonia Friedman;Jens Fedder - 通讯作者:
Jens Fedder
Randomized sham-controlled trial of the 6-month swallowable gas-filled intragastric balloon system for weight loss.
对为期 6 个月的可吞咽充气胃内气球系统进行减肥的随机假对照试验。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.1
- 作者:
Shelby Sullivan;J. Swain;G. Woodman;S. Edmundowicz;T. Hassanein;V. Shayani;John Fang;M. Noar;G. Eid;Wayne J. English;N. Tariq;Michael Larsen;S. Jonnalagadda;D. Riff;J. Ponce;D. Early;E. Volckmann;A. Ibele;Matthew D. Spann;K. Krishnan;J. Bucobo;A. Pryor - 通讯作者:
A. Pryor
Retinal nerve fiber layer thickness is associated with lesion length in acute optic neuritis
急性视神经炎视网膜神经纤维层厚度与病变长度相关
- DOI:
10.1212/wnl.0b013e3181ca0135 - 发表时间:
2010 - 期刊:
- 影响因子:9.9
- 作者:
Klaus Kallenbach;H. Simonsen;B. Sander;B. Wanscher;Henrik Larsson;Michael Larsen;Jette L. Frederiksen - 通讯作者:
Jette L. Frederiksen
Macular morphology and visual acuity after macular hole surgery with or without internal limiting membrane peeling
有或没有内界膜剥离的黄斑裂孔手术后黄斑形态和视力
- DOI:
10.1136/bjo.2009.159582 - 发表时间:
2009 - 期刊:
- 影响因子:4.1
- 作者:
U. Christensen;K. Krøyer;B. Sander;T. Jørgensen;Michael Larsen;M. Cour - 通讯作者:
M. Cour
Anatomical and functional outcomes one year after macular hole surgery
黄斑裂孔手术后一年的解剖和功能结果
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
L. Arnould;Y. Kauffmann;A. Bourredjem;C. Binquet;A. Bron;C. C. Garcher;Seok Jae;Lee;Kang Yeun;Sung Who Pak;Ik Soo Park;Byon;Sagong Min;S. Jeong;Moohyun Kim;Sooncheol Cha;Laurence Shen Lim;Wei Yan Ng;I. Yeo;R. Mathur;G. Cheung;T. Y. Wong;Hyun Woong Kim;Joo Eun Lee;Jae Pil Shin;Woohyok Chang;Yu Cheol Kim;Sang Joon Lee;In Young Chung;Eun E. Lee;T. Kohno;Manabu Yamamoto;Akira Cho;K. Hirayama;Ayako Yasui;S. Ataka;M. Hirabayashi;K. Shiraki;Christopher Brand;Sue Lacey;Osama Kanavati;H. Almuhtaseb;G. Agorogiannis;S. Goverdhan;Andrew J. Lotery;E. Borrelli;L. Toto;P. Carpineto;Rodolfo Mastropasqua;L. Antonio;M. Palmieri;Filomena Pinto;L. Mastropasqua;C. Jung;R. Blanco;O. Semoun;J. Uzzan;F. Coscas;M. Q. Maftouhi;J. Sahel;J. Korobelnik;N. Puche;G. Querques;E. Souied;Farid Afshar;Emily Fletcher;Quresh Mohamed;D. Barthelmes;Vuong Nguyen;Jennifer Arnold;I. mcAllister;Robyn Guymer;R. Essex;S. Young;M. Gillies;Ophthalmology;Oubraham;C. Faure;Thi Ha;Chau Tran;Benedicte Briend;L. Velasque;Isabelle Aubry;Michel Weber;S. Cohen;Sabiha Hacibekiroglu;Iacovos P. Michael;P. Westenskow;B. Ballios;Nikolaos Mitrousis;J. Tuo;Chi;D. Kooy;M. Shoichet;Martin Friedlander;Andras Nagy;Mount Sinai;Hospital;E. Rakoczy;C. Lai;Aaron L. Magno;Martyn French;S. Barone;Steven D. Schwartz;M. Blumenkranz;M. Degli;I. J. Constable;M. Gilca;K. Rezaei;Sebastian M. Waldstein;Victor Chong;Michael Larsen;J. Warburton;A. Weichselberger;Jonathan Wright;U. Schmidt - 通讯作者:
U. Schmidt
Michael Larsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Larsen', 18)}}的其他基金
RUI: Dynamic Guanidine-based Polymer Networks
RUI:动态胍基聚合物网络
- 批准号:
2105149 - 财政年份:2021
- 资助金额:
$ 15.88万 - 项目类别:
Continuing Grant
Collaborative Research to Explore the Spatial/Temporal Statistical-Physical Structures of Rain in the Vertical Plane
探索垂直平面降雨时空统计物理结构的合作研究
- 批准号:
2001490 - 财政年份:2020
- 资助金额:
$ 15.88万 - 项目类别:
Standard Grant
Developing a Life Sciences Workforce with Strong Quantitative Skills
培养具有强大定量技能的生命科学员工队伍
- 批准号:
1742241 - 财政年份:2018
- 资助金额:
$ 15.88万 - 项目类别:
Standard Grant
Collaborative Research: The Relationship of the Spatial/Temporal Variability of Rain to Scaling
合作研究:降雨的时空变化与尺度的关系
- 批准号:
1823334 - 财政年份:2018
- 资助金额:
$ 15.88万 - 项目类别:
Standard Grant
Collaborative Research: The Meteorological Variability of the Two Dimensional/Temporal Structures of Drop Size Distributions and Rain
合作研究:雨滴尺寸分布和降雨的二维/时间结构的气象变化
- 批准号:
1532977 - 财政年份:2015
- 资助金额:
$ 15.88万 - 项目类别:
Continuing Grant
Collaborative Research: Characterization of the Two-dimensional/Temporal Mosaic of Drop Size Distributions and Spatial Variability (Structure) in Rain
合作研究:雨中液滴尺寸分布和空间变化(结构)的二维/时间镶嵌特征
- 批准号:
1230240 - 财政年份:2012
- 资助金额:
$ 15.88万 - 项目类别:
Continuing Grant
相似国自然基金
整体域及其上阿贝尔簇相关算术对象的变化规律研究
- 批准号:12371013
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
代数几何和算术几何中的Hodge理论与Higgs丛理论
- 批准号:12331002
- 批准年份:2023
- 资助金额:193 万元
- 项目类别:重点项目
随机整数与随机排列的因子分布和Smith矩阵算术性质的研究
- 批准号:12371333
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
自守L-函数的Dirichlet系数的算术分布
- 批准号:12271297
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
志村簇的几何及其算术应用
- 批准号:12231001
- 批准年份:2022
- 资助金额:235 万元
- 项目类别:重点项目
相似海外基金
Conference: Arithmetic quantum field theory
会议:算术量子场论
- 批准号:
2400553 - 财政年份:2024
- 资助金额:
$ 15.88万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 15.88万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 15.88万 - 项目类别:
Continuing Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
- 批准号:
2337942 - 财政年份:2024
- 资助金额:
$ 15.88万 - 项目类别:
Continuing Grant