Situated Algorithmic Thinking: Preparing the Future Computing Workforce for Ethical Decision-Making through Interactive Case Studies

情境算法思维:通过交互式案例研究为未来的计算劳动力进行道德决策做好准备

基本信息

  • 批准号:
    1937950
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

This project aims to serve the national interest by studying how undergraduate students develop ethical decision-making skills. It will specifically focus on these skills in the context of algorithmic thinking. Algorithmic thinking solves problems by identifying step-by-step instructions that can solve the original problem as well as be used again and again to solve related problems. Algorithmic thinking is a foundation of computational thinking, information technology, and computing, all of which have had positive effects on many aspects of life. However, there is increasing concern about how algorithm-based technology may harm individuals and society. One concern is the potential for the algorithms that run software to have unintended outcomes, including production of biased results. For example, a hiring algorithm designed to evaluate candidates for an engineering job may be biased toward hiring male engineers because the data about successful engineers is mostly about successful male engineers. Therefore, it will be important to integrate ethical decision making into the computer science curriculum so that future programmers are aware of and can mitigate unintended algorithmic outcomes. Toward this goal, the project will develop, implement, and test six interactive case studies to engage undergraduate students in the ethical aspects of algorithmic thinking and algorithm design. The case studies will enable students to think through issues of algorithmic decision making from different perspectives. This experience is expected to promote student understanding of ethical considerations in the context of algorithmic thinking. The interactive case studies will be adaptable for use in other courses, in standalone workshops, and at other institutions. The ability to use algorithmic thinking to design and develop technology is a core concern for education of the future workforce. The challenge with algorithmic decision-making at a societal level is that algorithms can be (1) biased due to the characteristics of the underlying data used to train different models; (2) unaccountable in that there is no mechanism to audit them or for redress if an algorithm is misused or makes an error; and (3) misunderstood regarding how algorithm-driven decisions impact social justice or ethical issues. Given the importance of algorithms and their complexity, it is critical that students learn ethical decision-making as part of their computer science education. Building on the situated cognition paradigm of learning, this project will develop interactive case studies that provide students the opportunity to think through issues of algorithmic design. Engaging with the material from different perspectives and domains will allow students to develop a well-grounded understanding of the importance of ethics in the context of algorithm development. The research component of the project will measure how perspectival understanding develops using interactive case studies. The research study will use a mixed methods approach involving analysis of student-generated artifacts such as concept maps and analysis of student explanations, using coding strategies to document important trends and outcomes. This project is supported by the NSF Improving Undergraduate STEM Education Program: Education and Human Resources, which supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过研究本科生如何培养道德决策技能来服务国家利益。它将特别关注算法思维背景下的这些技能。算法思维通过识别可以解决原始问题以及一次又一次用于解决相关问题的分步指令来解决问题。算法思维是计算思维、信息技术和计算的基础,所有这些都对生活的许多方面产生了积极影响。 然而,人们越来越担心基于算法的技术可能会损害个人和社会。 令人担忧的一个问题是运行软件的算法可能会产生意想不到的结果,包括产生有偏见的结果。 例如,旨在评估工程职位候选人的招聘算法可能会偏向于招聘男性工程师,因为有关成功工程师的数据主要是有关成功男性工程师的数据。 因此,将道德决策纳入计算机科学课程非常重要,以便未来的程序员意识到并能够减轻意外的算法结果。为了实现这一目标,该项目将开发、实施和测试六个交互式案例研究,让本科生参与算法思维和算法设计的道德方面。案例研究将使学生能够从不同的角度思考算法决策问题。这种经验预计将促进学生对算法思维背景下的道德考虑的理解。交互式案例研究将适用于其他课程、独立研讨会和其他机构。使用算法思维来设计和开发技术的能力是未来劳动力教育的核心关注点。社会层面的算法决策面临的挑战是,算法可能 (1) 由于用于训练不同模型的基础数据的特征而存在偏差; (2) 不负责任,因为没有机制对其进行审计或在算法被滥用或出错时进行补救; (3) 对算法驱动的决策如何影响社会正义或道德问题存在误解。鉴于算法的重要性及其复杂性,学生在计算机科学教育中学习道德决策至关重要。该项目以情境认知学习范式为基础,将开发交互式案例研究,为学生提供思考算法设计问题的机会。从不同的角度和领域接触这些材料将使学生对算法开发中的道德重要性有一个有根据的理解。该项目的研究部分将通过互动案例研究来衡量视角理解的发展情况。该研究将使用混合方法,包括分析学生生成的工件(例如概念图)和分析学生的解释,使用编码策略来记录重要趋势和结果。该项目得到了 NSF 改善本科生 STEM 教育计划:教育和人力资源的支持,该计划支持研究和开发项目,以提高所有学生 STEM 教育的有效性。通过参与学生学习轨道,该计划支持有前途的实践和工具的创建、探索和实施。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assessing Engineering Student’s Representation and Identification of Ethical Dilemmas through Concept Maps and Role-Plays
通过概念图和角色扮演评估工科学生对道德困境的表述和识别
  • DOI:
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hingle, Ashish;Johri, Aditya
  • 通讯作者:
    Johri, Aditya
Students' technological ambivalence toward online proctoring and the need for responsible use of educational technologies
学生对在线监考的技术矛盾心理以及负责任地使用教育技术的必要性
  • DOI:
    10.1002/jee.20504
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Johri, Aditya;Hingle, Ashish
  • 通讯作者:
    Hingle, Ashish
Learning to Link Micro, Meso, and Macro Ethical Concerns Through Role-Play Discussions
学习通过角色扮演讨论将微观、中观和宏观道德问题联系起来
Instructing First-Year Engineering Students on the Ethics of Algorithms through a Role-Play
通过角色扮演指导一年级工科学生算法伦理
Using Role-Plays to Improve Ethical Understanding of Algorithms Among Computing Students
使用角色扮演来提高计算机专业学生对算法的道德理解
  • DOI:
    10.1109/fie49875.2021.9637418
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hingle, Ashish;Rangwala, Huzefa;Johri, Aditya;Monea, Ale
  • 通讯作者:
    Monea, Ale
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aditya Johri其他文献

Representational literacy and participatory learning in large engineering classes using pen-based computing
使用笔式计算在大型工程课程中进行表征素养和参与式学习
A Systematic Review of AI Literacy Conceptualization, Constructs, and Implementation and Assessment Efforts (2019-2023)
人工智能素养概念化、构建、实施和评估工作的系统回顾(2019-2023)
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Omaima Almatrafi;Aditya Johri;Hyuna Lee
  • 通讯作者:
    Hyuna Lee
Teaching Multidimensional Ethical Decision-Making Through a Role-Play Case Study
通过角色扮演案例研究教授多维道德决策
Learning Analytics in Higher Education
高等教育中的学习分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaime Lester;Carrie Klein;H. Rangwala;Aditya Johri
  • 通讯作者:
    Aditya Johri
Generative Artificial Intelligence in Higher Education: Evidence from an Analysis of Institutional Policies and Guidelines
高等教育中的生成人工智能:来自机构政策和指南分析的证据
  • DOI:
    10.48550/arxiv.2402.01659
  • 发表时间:
    2024-01-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nora McDonald;Aditya Johri;Areej Ali;Aayushi Hingle
  • 通讯作者:
    Aayushi Hingle

Aditya Johri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aditya Johri', 18)}}的其他基金

Education DCL: EAGER: An Embedded Case Study Approach for Broadening Students' Mindset for Ethical and Responsible Cybersecurity
教育 DCL:EAGER:一种嵌入式案例研究方法,用于拓宽学生道德和负责任的网络安全思维
  • 批准号:
    2335636
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Impact of Generative Artificial Intelligence (GAI) on Engineering Education Practices
EAGER:生成人工智能 (GAI) 对工程教育实践的影响
  • 批准号:
    2319137
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Workshop: ProVis-EER: Developing Professional Vision into Empirical Practices within Engineering Education Research (EER) though Digital Apprenticeship
研讨会:ProVis-EER:通过数字学徒制将专业愿景发展为工程教育研究 (EER) 中的实证实践
  • 批准号:
    2112775
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative EAGER: Novel Ethnographic Investigations of Engineering Workplaces to Advance Theory and Research Methods for Preparing the Future Workforce
协作 EAGER:对工程工作场所进行新颖的民族志调查,以推进为未来劳动力做好准备的理论和研究方法
  • 批准号:
    1939105
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Workshop: Building an Inclusive Foundation of Engineering Education Research Scholarship for Future Growth
研讨会:为未来发展建立工程教育研究奖学金的包容性基础
  • 批准号:
    1941186
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Deeper Learning of Data Science (DLDS): Studying Real-world Experiences of Engineering Professionals to Prepare the Future Workforce
数据科学深度学习 (DLDS):研究工程专业人员的真实经验,为未来的劳动力做好准备
  • 批准号:
    1712129
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Social Media Participation as Indicator of Actors, Awareness, Attitudes, and Activities Related to STEM Education
EAGER:社交媒体参与度作为与 STEM 教育相关的参与者、意识、态度和活动的指标
  • 批准号:
    1707837
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Technology Adoption during Environmental Jolts: Mobile Phone Use and Digital Services Appropriation during India's Demonetization Crisis
RAPID:合作研究:环境动荡期间的技术采用:印度废钞危机期间的手机使用和数字服务挪用
  • 批准号:
    1733634
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research (EAGER): Data Ecosystem for Catalyzing Transformative Research in Engineering Education
协作研究(EAGER):促进工程教育变革性研究的数据生态系统
  • 批准号:
    1306373
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Deep Insights Anytime, Anywhere (DIA2) - Central Resource for Characterizing the TUES Portfolio through Interactive Knowledge Mining and Visualizations
协作研究:随时随地深入洞察 (DIA2) - 通过交互式知识挖掘和可视化来表征 TUES 产品组合的中心资源
  • 批准号:
    1444277
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
  • 批准号:
    62306090
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高精度海表反照率遥感算法研究
  • 批准号:
    42376173
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
  • 批准号:
    82371878
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
  • 批准号:
    62371156
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Using Machine Learning to Optimize User Engagement and Clinical Response to Digital Mental Health Interventions
使用机器学习优化用户参与度和对数字心理健康干预措施的临床反应
  • 批准号:
    10442069
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Using Machine Learning to Optimize User Engagement and Clinical Response to Digital Mental Health Interventions
使用机器学习优化用户参与度和对数字心理健康干预措施的临床反应
  • 批准号:
    10642782
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
  • 批准号:
    10406058
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Using Machine Learning to Optimize User Engagement and Clinical Response to Digital Mental Health Interventions
使用机器学习优化用户参与度和对数字心理健康干预措施的临床反应
  • 批准号:
    10442069
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10367404
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了