Groups and Arithmetic
群与算术
基本信息
- 批准号:2401098
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award will support the PI's research program concerning group theory and its applications. Groups specify symmetry types; for instance, all bilaterally symmetric animals share a symmetry group, which is different from that of a starfish or of a sand dollar. Important examples of groups arise from the study of symmetry in geometry and in algebra (where symmetries of number systems are captured by ``Galois groups''). Groups can often be usefully expressed as finite sequences of basic operations, like face-rotations for the Rubik's cube group, or gates acting on the state of a quantum computer. One typical problem is understanding which groups can actually arise in situations of interest. Another is understanding, for particular groups, whether all the elements of the group can be expressed efficiently in terms of a single element or by a fixed formula in terms of varying elements. The realization of a particular group as the symmetry group of n-dimensional space is a key technical method to analyze these problems. The award will also support graduate student summer research. The project involves using character-theoretic methods alone or in combination with algebraic geometry, to solve problems about finite simple groups. In particular, these tools can be applied to investigate questions about solving equations when the variables are elements of a simple group. For instance, Thompson's Conjecture, asserting the existence, in any finite simple group of a conjugacy class whose square is the whole group, is of this type. A key to these methods is the observation that, in practice, character values are usually surprisingly small. Proving and exploiting variations on this theme is one of the main goals of the project. One class of applications is to the study of representation varieties of finitely generated groups, for instance Fuchsian groups. In a different direction, understanding which Galois groups can arise in number theory and how they can act on sets determined by polynomial equations, is an important goal of this project and, indeed, a key goal of number theorists for more than 200 years.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将支持PI关于小组理论及其应用的研究计划。 组指定对称类型;例如,所有双侧对称动物都有一个对称群体,与海星或沙美元不同。 群体的重要例子是由几何和代数中的对称性的研究(其中数字系统的对称性捕获的``Galois offers''')。 通常可以将组用作基本操作的有限序列,例如对rubik的立方体组的面部旋转或作用于量子计算机状态的门。 一个典型的问题是了解在感兴趣的情况下实际上可能出现哪些群体。 另一个是针对特定组的理解,是否可以根据单个元素有效地表达组的所有元素,还是通过固定公式在变化的元素方面表达。 特定群体作为N维空间的对称组的实现是分析这些问题的关键技术方法。该奖项还将支持研究生夏季研究。该项目涉及单独使用字符理论方法或与代数几何形状结合使用,以解决有限简单组的问题。 特别是,当变量是简单组的要素时,可以应用这些工具来调查有关求解方程的问题。 例如,汤普森(Thompson)的猜想,在任何有限的简单组中,在其正方形是整个组的任何有限的简单组中都存在这种类型。 这些方法的关键是观察到,实际上,字符值通常很小。 证明和利用此主题的变化是该项目的主要目标之一。 一类应用程序是研究有限生成的群体(例如紫红色群体)的表示形式的研究。 在不同的方向上,了解哪些GALOIS群体在数字理论中可能出现哪些群体以及他们如何在多项式方程确定的集合上作用,这是该项目的重要目标,实际上,数字理论家的关键目标已有200多年了。奖项反映了NSF的法定任务,并通过使用基金会的智力优点和更广泛的影响审查标准评估值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Larsen其他文献
CLEP_A_310795 477..500
CLEP_A_310795 477..500
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Bente Mertz Nørgård;Laura Catalini;Line Riis Jølving;Michael Larsen;Sonia Friedman;Jens Fedder - 通讯作者:
Jens Fedder
Randomized sham-controlled trial of the 6-month swallowable gas-filled intragastric balloon system for weight loss.
对为期 6 个月的可吞咽充气胃内气球系统进行减肥的随机假对照试验。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.1
- 作者:
Shelby Sullivan;J. Swain;G. Woodman;S. Edmundowicz;T. Hassanein;V. Shayani;John Fang;M. Noar;G. Eid;Wayne J. English;N. Tariq;Michael Larsen;S. Jonnalagadda;D. Riff;J. Ponce;D. Early;E. Volckmann;A. Ibele;Matthew D. Spann;K. Krishnan;J. Bucobo;A. Pryor - 通讯作者:
A. Pryor
Macular morphology and visual acuity after macular hole surgery with or without internal limiting membrane peeling
有或没有内界膜剥离的黄斑裂孔手术后黄斑形态和视力
- DOI:
10.1136/bjo.2009.159582 - 发表时间:
2009 - 期刊:
- 影响因子:4.1
- 作者:
U. Christensen;K. Krøyer;B. Sander;T. Jørgensen;Michael Larsen;M. Cour - 通讯作者:
M. Cour
Retinal nerve fiber layer thickness is associated with lesion length in acute optic neuritis
急性视神经炎视网膜神经纤维层厚度与病变长度相关
- DOI:
10.1212/wnl.0b013e3181ca0135 - 发表时间:
2010 - 期刊:
- 影响因子:9.9
- 作者:
Klaus Kallenbach;H. Simonsen;B. Sander;B. Wanscher;Henrik Larsson;Michael Larsen;Jette L. Frederiksen - 通讯作者:
Jette L. Frederiksen
Anatomical and functional outcomes one year after macular hole surgery
黄斑裂孔手术后一年的解剖和功能结果
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
L. Arnould;Y. Kauffmann;A. Bourredjem;C. Binquet;A. Bron;C. C. Garcher;Seok Jae;Lee;Kang Yeun;Sung Who Pak;Ik Soo Park;Byon;Sagong Min;S. Jeong;Moohyun Kim;Sooncheol Cha;Laurence Shen Lim;Wei Yan Ng;I. Yeo;R. Mathur;G. Cheung;T. Y. Wong;Hyun Woong Kim;Joo Eun Lee;Jae Pil Shin;Woohyok Chang;Yu Cheol Kim;Sang Joon Lee;In Young Chung;Eun E. Lee;T. Kohno;Manabu Yamamoto;Akira Cho;K. Hirayama;Ayako Yasui;S. Ataka;M. Hirabayashi;K. Shiraki;Christopher Brand;Sue Lacey;Osama Kanavati;H. Almuhtaseb;G. Agorogiannis;S. Goverdhan;Andrew J. Lotery;E. Borrelli;L. Toto;P. Carpineto;Rodolfo Mastropasqua;L. Antonio;M. Palmieri;Filomena Pinto;L. Mastropasqua;C. Jung;R. Blanco;O. Semoun;J. Uzzan;F. Coscas;M. Q. Maftouhi;J. Sahel;J. Korobelnik;N. Puche;G. Querques;E. Souied;Farid Afshar;Emily Fletcher;Quresh Mohamed;D. Barthelmes;Vuong Nguyen;Jennifer Arnold;I. mcAllister;Robyn Guymer;R. Essex;S. Young;M. Gillies;Ophthalmology;Oubraham;C. Faure;Thi Ha;Chau Tran;Benedicte Briend;L. Velasque;Isabelle Aubry;Michel Weber;S. Cohen;Sabiha Hacibekiroglu;Iacovos P. Michael;P. Westenskow;B. Ballios;Nikolaos Mitrousis;J. Tuo;Chi;D. Kooy;M. Shoichet;Martin Friedlander;Andras Nagy;Mount Sinai;Hospital;E. Rakoczy;C. Lai;Aaron L. Magno;Martyn French;S. Barone;Steven D. Schwartz;M. Blumenkranz;M. Degli;I. J. Constable;M. Gilca;K. Rezaei;Sebastian M. Waldstein;Victor Chong;Michael Larsen;J. Warburton;A. Weichselberger;Jonathan Wright;U. Schmidt - 通讯作者:
U. Schmidt
Michael Larsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Larsen', 18)}}的其他基金
RUI: Dynamic Guanidine-based Polymer Networks
RUI:动态胍基聚合物网络
- 批准号:
2105149 - 财政年份:2021
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Collaborative Research to Explore the Spatial/Temporal Statistical-Physical Structures of Rain in the Vertical Plane
探索垂直平面降雨时空统计物理结构的合作研究
- 批准号:
2001490 - 财政年份:2020
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Developing a Life Sciences Workforce with Strong Quantitative Skills
培养具有强大定量技能的生命科学员工队伍
- 批准号:
1742241 - 财政年份:2018
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: The Relationship of the Spatial/Temporal Variability of Rain to Scaling
合作研究:降雨的时空变化与尺度的关系
- 批准号:
1823334 - 财政年份:2018
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: The Meteorological Variability of the Two Dimensional/Temporal Structures of Drop Size Distributions and Rain
合作研究:雨滴尺寸分布和降雨的二维/时间结构的气象变化
- 批准号:
1532977 - 财政年份:2015
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Collaborative Research: Characterization of the Two-dimensional/Temporal Mosaic of Drop Size Distributions and Spatial Variability (Structure) in Rain
合作研究:雨中液滴尺寸分布和空间变化(结构)的二维/时间镶嵌特征
- 批准号:
1230240 - 财政年份:2012
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
相似国自然基金
整体域及其上阿贝尔簇相关算术对象的变化规律研究
- 批准号:12371013
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
代数几何和算术几何中的Hodge理论与Higgs丛理论
- 批准号:12331002
- 批准年份:2023
- 资助金额:193 万元
- 项目类别:重点项目
随机整数与随机排列的因子分布和Smith矩阵算术性质的研究
- 批准号:12371333
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
自守L-函数的Dirichlet系数的算术分布
- 批准号:12271297
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
志村簇的几何及其算术应用
- 批准号:12231001
- 批准年份:2022
- 资助金额:235 万元
- 项目类别:重点项目
相似海外基金
Arithmetic of Thin Groups and Isogeny-Based Cryptography
稀疏群算法和基于同源的密码学
- 批准号:
2401580 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
- 批准号:
2305231 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Cohomology of arithmetic groups in GL(2) over definite quaternion algebras
GL(2) 定四元数代数上算术群的上同调
- 批准号:
2884658 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Studentship
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
- 批准号:
RGPIN-2020-06146 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Discovery Grants Program - Individual