GOALI: Collaborative Research: Fundamental studies of water - hydrocarbon condensation

目标:合作研究:水-碳氢化合物凝结的基础研究

基本信息

项目摘要

Abstract Currently, natural gas supplies ~23% of U.S. energy needs. In addition to CH4, raw natural gas contains water, higher hydrocarbons, and other substances that must be removed before the gas is transported and used. For off-shore wells, treatment near the wellhead is critical to prevent clathrates from forming and plugging the pipeline as gas flows to the mainland. The raw gas is normally treated by adding chemicals or reducing its dew point, but standard processing equipment is often large and requires manned platform operation. An alternative approach is to use supersonic natural gas separators that (1) cool the gas in a supersonic expansion to induce droplet formation and growth, (2) separate the droplets from the gas, and, (3) recompress the dried gas using a diffuser to minimize pressure losses. These separators are smaller than traditional process equipment, have no moving parts, and require no chemicals. Thus, they are suited for both off-shore and sub-sea applications. Worldwide, three of these devices are now in commercial operation. Twister BV, the industrial partner for this proposal, is at the forefront of developing and implementing this technology. As these devices are adopted, however, critical questions remain regarding droplet formation and growth in these complex vapor mixtures, and these questions are related to the structure of the droplets. Intellectual Merit: With an overarching goal of improving the efficiency of natural gas production, this proposal examines droplet formation, growth, and structure in highly non-ideal water hydrocarbon systems under conditions that mimic those found in the supersonic separators. The experimental program will characterize the condensation process in supersonic nozzles, at Mach numbers comparable to the real separators, using pressure measurements and spectroscopy. The resultant aerosols will be characterized using small angle x-ray and/or neutron scattering. The theoretical program will focus on understanding droplet structure, formation and growth rates as a function of the key parameters, i.e., the vapor phase compositions and temperature. Combining the experimental results with the theoretical calculations and detailed modeling will result in more robust descriptions of multicomponent droplet formation and growth that can then be incorporated into the computational fluid dynamics codes used to describe and optimize the performance of supersonic separators. This novel application of computer simulation techniques and density functional theory and of small angle neutron and x-ray scattering experiments is helping transform the field of aerosol science by enabling the solution of problems that previously defied investigation. Broader Impacts: In a broader context, this work is directed toward improving the energy efficiency of natural gas production. In addition to their relevance to the domestic natural gas industry, as well as to Twister BV, the results stemming from this work are of interest to other researchers in nucleation, aerosol science, and cloud and atmospheric physics. In the area of education and training, this project will provide a rich, highly interdisciplinary research environment for all students and will incorporate a unique international experience for graduate students. Participation in the research by undergraduate students, particularly from minority and underrepresented groups, will be fostered. As an important outreach activity, table top diffusion cloud chambers will be built so that students and teachers can visualize cloud formation in the classroom, a process that is of great interest in elementary and high school education but is not easily realized.
摘要目前,天然气供应约占美国能源需求的23%。除CH4外,原始天然气还含有水,较高的碳氢化合物和其他物质,在运输和使用气体之前必须去除。对于离岸井,在井口附近的治疗对于防止撞线液在气体流向大陆时形成和堵塞管道至关重要。通常通过添加化学品或减少其露点来处理原始气体,但是标准处理设备通常很大,需要载人的平台操作。另一种方法是使用超音速天然气分离器(1)(1)在超音速膨胀中冷却气体以诱导液滴的形成和生长,(2)将液滴与气体与气体分开,以及(3)使用扩散器使用扩散器重新压缩干燥的气体,以最大程度地减小压力损失。这些分离器比传统工艺设备小,没有运动部件,不需要化学品。因此,它们适用于离岸和海上应用程序。在全球范围内,这些设备中的三个现在正在商业运营中。该提案的工业合作伙伴Twister BV处于开发和实施这项技术的最前沿。但是,随着这些设备的采用,有关这些复杂蒸气混合物中液滴形成和生长的关键问题仍然存在,这些问题与液滴的结构有关。智力优点:以提高天然气生产效率的总体目标,该提案研究了在模仿超音速分离器中发现的条件下,高度非理想的水烃系统中的液滴形成,生长和结构。实验程序将使用压力测量和光谱法来表征超音速喷嘴中的凝结过程,马赫数与真实分离器相当。将使用小角度X射线和/或中子散射来表征所得的气溶胶。理论计划将集中于理解液滴结构,形成和生长速率,这是关键参数的函数,即蒸气相的组成和温度。将实验结果与理论计算和详细的建模相结合将导致对多组分液滴形成和生长的更强大描述,然后可以将其纳入用于描述和优化超音速分离器性能的计算流体动力学代码中。计算机仿真技术和密度功能理论以及小角度中子和X射线散射实验的这种新颖的应用正在通过实现先前违反研究的问题的解决方案来帮助改变气溶胶科学领域。更广泛的影响:在更广泛的背景下,这项工作旨在提高天然气生产的能源效率。除了与国内天然气行业的相关性以及与Twister BV的相关性外,这项工作的结果还引起了其他研究人员的核心,气溶胶科学以及云和大气物理学的兴趣。在教育和培训领域,该项目将为所有学生提供丰富的,高度的跨学科研究环境,并为研究生提供独特的国际体验。本科生,特别是来自少数群体和代表性不足的群体的研究将被培育。作为一项重要的外展活动,将建立桌面扩散云室,以便学生和老师可以在课堂上可视化云形成,这一过程对小学和高中教育非常感兴趣,但不容易实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerald Wilemski其他文献

Gerald Wilemski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

开放人机协作场景中的未知目标识别和人体运动预测方法研究
  • 批准号:
    62203348
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
开放人机协作场景中的未知目标识别和人体运动预测方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向未知目标协作搬运的黏附型空中作业机器人动力学机理与协调控制研究
  • 批准号:
    52202452
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
  • 批准号:
    52105525
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129825
  • 财政年份:
    2022
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129776
  • 财政年份:
    2022
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
  • 批准号:
    2219788
  • 财政年份:
    2022
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
  • 批准号:
    2302217
  • 财政年份:
    2022
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了