COLLABORATIVE RESEARCH: ELECTRON TRANSPORT MEMBRANE USING NANOSTRUCTURED BLOCK COPOLYMER ASSEMBLIES

合作研究:使用纳米结构嵌段共聚物组件的电子传输膜

基本信息

  • 批准号:
    0930986
  • 负责人:
  • 金额:
    $ 19.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

0930986EppsIntellectual Merit: Nanoscale control of conjugated (conducting) polymers is especially important as the morphology of such functional materials plays a significant role in device performance, influencing properties such as conductivity, thermal stability, processability, and mechanical integrity. The goal of this proposal is to create new polymeric network materials for organic electronics devices, with improved performance due to the formation of well defined and continuous nanoscale conducting pathways. This goal will be achieved by combining the synthesis of near monodisperse conducting polymers (regioregular poly(3-alkylthiophenes) (rr-P3AT)s ), with the natural self assembly of block copolymers (BCPs) to create novel polymeric materials with the ability to form multiply continuous assemblies. There are two specific aims of this proposal. First, novel network forming ABC triblock copolymers containing an electrically conductive block will be synthesized. These materials will be designed such that they contain the block copolymer volume fractions necessary to generate the interfacial curvature and saddle surfaces, which are a hallmark of nanoscale networks. In addition, the chemical connectivity of the polymer will be designed such that crystallization of the conducting (rod) block is confined in order to maintain the network morphology. Next, membrane structures will be characterized by scattering, microscopy, and mechanical analysis techniques; membrane conductivity (and mobility) also will be examined using four point probe measurements, and dielectric spectroscopy. The proposed nanoscale network morphologies have superior mechanical attributes, relative to layers and cylindrical channels, and their percolating interconnected domains and large interfacial area present the opportunity to create conducting materials with tailored transport, chemical, and mechanical properties. These factors will lead to a dramatic improvement over polymer blend systems, where the creation of uniform-sized continuous pathways for conduction and transport is a key hurdle to improving the efficiency of polymeric devices.Broader Impact: The ability to create continuous nanoscale conducting pathways in organic thin films is crucial for further development and use of organic materials because poor electronic properties at domain boundaries often limit overall device properties. This is of particular concern for light emitting diodes (LEDs), thin-film transistors (TFTs), and photovoltaics (PVs), where improved transport is essential in the electronically active layers of these devices. While the synthesis of rr-P3AT BCPs has been reported in the literature, this work seeks to innovate their design. Specifically, the copolymers described above will contain one block that imparts toughness; a second block to provide confinement of the crystallizable block; and a third block that is crystallizable and conducting. A novel aspect of this work is that the chemistry of the conducting rr-P3AT block has been modified to lower the crystallization temperature, so that crystallization does not alter the overall self assembled block copolymer structure. The proposed research will provide new insights into the interplay between rod coil block copolymer composition, morphology and electronic properties. Collectively, this is expected to result in the optimization of CP morphology and electronic properties. Furthermore, this interdisciplinary project will train graduate and undergraduate students to address key scientific and engineering challenges in nanotechnology. Specific broader impact and educational initiatives are focused on increasing the participation of under represented groups. These include: providing summer research and mentorship opportunities through the PI's involvement with the ACS Diversity Partner Program and Minority Scholars Program. Additionally, the co-PI's involvement with several programs at Iowa State University [ISU] (AGEP, Freshman Honors, and NOBCChE) will be used to recruit graduate students from under represented groups to ISU. Finally, we propose the exchange of students between the University of Delaware, Chemical Engineering Department, and the ISU, Department of Chemistry, to broaden their research knowledge base.
0930986EPPSINTELLECTUAL FEARIT:共轭(导电)聚合物的纳米级控制尤其重要,因为此类功能材料的形态在设备性能,影响诸如电导率,热稳定性,加工性,加工性和机械完整性等特性中起着重要作用。该提案的目的是为有机电子设备创建新的聚合物网络材料,由于形成良好的定义且连续的纳米级传导途径,其性能得到了改善。将通过将近单分散导电聚合物(3-烷基噻吩)(RR-P3AT)s的近单分散导电聚合物(RR-P3AT)S)合成的合成来实现这一目标,并将其与块共聚物(BCP)的自然自组装一起创建新的聚合物材料,并具有形成乘以繁殖的能力。该提议有两个具体的目标。首先,将合成含有导电块的新型网络形成ABC三嵌段共聚物。这些材料的设计将使它们包含产生界面曲率和马鞍表面所需的块共聚物体积分数,它们是纳米级网络的标志。此外,将设计聚合物的化学连通性,以使导电(杆)块的结晶被限制以维持网络形态。接下来,膜结构将以散射,显微镜和机械分析技术为特征。还将使用四个探针测量和介电光谱检查膜电导率(和迁移率)。所提出的纳米级网络形态具有相对于层和圆柱通道的较高的机械属性,并且它们的渗透互连域和大界面区域为创建具有量身定制的运输,化学和机械性能的导电材料提供了机会。这些因素将导致对聚合物混合系统的巨大改善,在该系统中,创建统一大小的连续途径进行传导和运输是提高聚合物设备效率的关键障碍。BoDROADER的影响:创建连续的纳米级传导途径在有机薄膜中创造连续的纳米级传导途径通常是为了进一步开发和使用有机材料,因为在较差的设备上是有限的。这对于发光二极管(LED),薄膜晶体管(TFT)和光伏(PVS)特别关注,在这些设备的电子活动层中,改进的传输至关重要。尽管在文献中已经报道了RR-P3AT BCP的合成,但这项工作旨在创新其设计。具体而言,上述共聚物将包含一个赋予韧性的块。第二个块可提供可结晶的块;和第三个块,可结晶且导致。这项工作的一个新方面是,已经对导电RR-P3AT块的化学性进行了修改以降低结晶温度,因此结晶不会改变整体自组装块共聚物结构。拟议的研究将提供有关杆线圈共聚物组成,形态和电子特性之间相互作用的新见解。总体而言,这有望导致CP形态和电子特性的优化。此外,这个跨学科项目将培训毕业生和本科生,以应对纳米技术中的关键科学和工程挑战。具体的更广泛的影响和教育计划的重点是增加代表群体的参与。其中包括:通过PI参与ACS多样性合作伙伴计划和少数民族学者计划,提供夏季研究和指导机会。此外,Co-Pi参与爱荷华州立大学(ISU](AGEP,新生荣誉和Nobcche)的几个课程将用于招募来自代表的小组到ISU的研究生。最后,我们建议在特拉华大学化学工程系和化学系ISU之间进行学生交流,以扩大其研究知识库。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Epps其他文献

Thomas Epps的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Epps', 18)}}的其他基金

University of Delaware MRSEC - Center for Hybrid, Active, and Responsive Materials (CHARM)
特拉华大学 MRSEC - 混合活性响应材料中心 (CHARM)
  • 批准号:
    2011824
  • 财政年份:
    2020
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Cooperative Agreement
GCR: Life Cycle Management of Materials: Sustainable Biomass to Designer Polymer Systems
GCR:材料的生命周期管理:从可持续生物质到设计聚合物系统
  • 批准号:
    1934887
  • 财政年份:
    2019
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Continuing Grant
EAPSI: Connecting Distributed Impacts in Urban Watersheds to In-stream Hydrology and Water Quality Observations through Refined Landscape Metrics for Optimal Stormwater Handling
EAPSI:通过精细的景观指标将城市流域的分布式影响与河流内水文和水质观测联系起来,以实现最佳雨水处理
  • 批准号:
    1613598
  • 财政年份:
    2016
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Fellowship Award
Future Faculty Workshop: Grooming Diverse Leaders for the Future, Summers of 2016-2018
未来教师研讨会:为未来培养多元化的领导者,2016-2018 年夏季
  • 批准号:
    1642025
  • 财政年份:
    2016
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
GOALI: Directed Self-Assembly of Linear and Star Block Copolymer Thin Films - Oriented Nanostructures with Reduced Feature Sizes via Raster Annealing
GOALI:线性和星形嵌段共聚物薄膜的定向自组装 - 通过光栅退火缩小特征尺寸的定向纳米结构
  • 批准号:
    1610134
  • 财政年份:
    2016
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Continuing Grant
SusChEM: Biobased Platform for the Sustainable Molecular Design and Controlled Synthesis of Block Polymers from Renewable Feedstocks
SusChEM:用于从可再生原料中进行嵌段聚合物的可持续分子设计和受控合成的生物基平台
  • 批准号:
    1507010
  • 财政年份:
    2015
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
SusChEM: BPA Replacement with Non-Toxic Biobased Monomers
SusChEM:用无毒生物基单体替代 BPA
  • 批准号:
    1506623
  • 财政年份:
    2015
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
Travel Support for Domestic Invited Speakers to Attend the "Emerging Areas in Polymer Science and Engineering" Program at the 2012 AIChE Fall Meeting
为国内特邀演讲者参加2012年AIChE秋季会议“高分子科学与工程新兴领域”项目提供差旅费
  • 批准号:
    1242289
  • 财政年份:
    2012
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
Tapered Block Copolymers: Interfacial Manipulation and Nanoscale Network Formation in Bulk and Thin Film Materials
锥形嵌段共聚物:块状和薄膜材料中的界面操纵和纳米级网络形成
  • 批准号:
    1207041
  • 财政年份:
    2012
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
NER: Reusable Active Nanostructured Capture Devices for Proteomics and Metabolomics
NER:用于蛋白质组学和代谢组学的可重复使用的活性纳米结构捕获装置
  • 批准号:
    0707507
  • 财政年份:
    2007
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant

相似国自然基金

准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
  • 批准号:
    12304175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
石墨烯-二维半导体异质结Dirac电子的调控研究
  • 批准号:
    12304106
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维电子气/二维铁磁异质结中自旋轨道矩研究
  • 批准号:
    52371246
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多维度高次谐波谱中的多电子动力学研究
  • 批准号:
    12304304
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
电离层电子浓度午夜塌陷的观测和机制研究
  • 批准号:
    42374192
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
  • 批准号:
    2225370
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: Insights into the Hydrogen Evolution Reaction of Transition Metal Dichalcogenide Nanocrystals by In-situ Electron Paramagnetic Resonance Spectroscopy
合作研究:EAGER:通过原位电子顺磁共振波谱洞察过渡金属二硫族化物纳米晶体的析氢反应
  • 批准号:
    2302783
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
  • 批准号:
    2246509
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Insights into the Hydrogen Evolution Reaction of Transition Metal Dichalcogenide Nanocrystals by In-situ Electron Paramagnetic Resonance Spectroscopy
合作研究:EAGER:通过原位电子顺磁共振波谱洞察过渡金属二硫族化物纳米晶体的析氢反应
  • 批准号:
    2302782
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
Environmental Agents as Modulators of Disease Processes
环境因素作为疾病过程的调节剂
  • 批准号:
    10852393
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了