COLLABORATIVE RESEARCH: ELECTRON TRANSPORT MEMBRANE USING NANOSTRUCTURED BLOCK COPOLYMER ASSEMBLIES

合作研究:使用纳米结构嵌段共聚物组件的电子传输膜

基本信息

  • 批准号:
    0930986
  • 负责人:
  • 金额:
    $ 19.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

0930986EppsIntellectual Merit: Nanoscale control of conjugated (conducting) polymers is especially important as the morphology of such functional materials plays a significant role in device performance, influencing properties such as conductivity, thermal stability, processability, and mechanical integrity. The goal of this proposal is to create new polymeric network materials for organic electronics devices, with improved performance due to the formation of well defined and continuous nanoscale conducting pathways. This goal will be achieved by combining the synthesis of near monodisperse conducting polymers (regioregular poly(3-alkylthiophenes) (rr-P3AT)s ), with the natural self assembly of block copolymers (BCPs) to create novel polymeric materials with the ability to form multiply continuous assemblies. There are two specific aims of this proposal. First, novel network forming ABC triblock copolymers containing an electrically conductive block will be synthesized. These materials will be designed such that they contain the block copolymer volume fractions necessary to generate the interfacial curvature and saddle surfaces, which are a hallmark of nanoscale networks. In addition, the chemical connectivity of the polymer will be designed such that crystallization of the conducting (rod) block is confined in order to maintain the network morphology. Next, membrane structures will be characterized by scattering, microscopy, and mechanical analysis techniques; membrane conductivity (and mobility) also will be examined using four point probe measurements, and dielectric spectroscopy. The proposed nanoscale network morphologies have superior mechanical attributes, relative to layers and cylindrical channels, and their percolating interconnected domains and large interfacial area present the opportunity to create conducting materials with tailored transport, chemical, and mechanical properties. These factors will lead to a dramatic improvement over polymer blend systems, where the creation of uniform-sized continuous pathways for conduction and transport is a key hurdle to improving the efficiency of polymeric devices.Broader Impact: The ability to create continuous nanoscale conducting pathways in organic thin films is crucial for further development and use of organic materials because poor electronic properties at domain boundaries often limit overall device properties. This is of particular concern for light emitting diodes (LEDs), thin-film transistors (TFTs), and photovoltaics (PVs), where improved transport is essential in the electronically active layers of these devices. While the synthesis of rr-P3AT BCPs has been reported in the literature, this work seeks to innovate their design. Specifically, the copolymers described above will contain one block that imparts toughness; a second block to provide confinement of the crystallizable block; and a third block that is crystallizable and conducting. A novel aspect of this work is that the chemistry of the conducting rr-P3AT block has been modified to lower the crystallization temperature, so that crystallization does not alter the overall self assembled block copolymer structure. The proposed research will provide new insights into the interplay between rod coil block copolymer composition, morphology and electronic properties. Collectively, this is expected to result in the optimization of CP morphology and electronic properties. Furthermore, this interdisciplinary project will train graduate and undergraduate students to address key scientific and engineering challenges in nanotechnology. Specific broader impact and educational initiatives are focused on increasing the participation of under represented groups. These include: providing summer research and mentorship opportunities through the PI's involvement with the ACS Diversity Partner Program and Minority Scholars Program. Additionally, the co-PI's involvement with several programs at Iowa State University [ISU] (AGEP, Freshman Honors, and NOBCChE) will be used to recruit graduate students from under represented groups to ISU. Finally, we propose the exchange of students between the University of Delaware, Chemical Engineering Department, and the ISU, Department of Chemistry, to broaden their research knowledge base.
0930986Epps智力优点:共轭(导电)聚合物的纳米级控制尤其重要,因为此类功能材料的形态在器件性能中发挥着重要作用,影响导电性、热稳定性、可加工性和机械完整性等性能。该提案的目标是为有机电子器件创造新的聚合物网络材料,由于形成明确且连续的纳米级导电路径而提高性能。这一目标将通过将近单分散导电聚合物(立体规则性聚(3-烷基噻吩)(rr-P3AT))的合成与嵌段共聚物(BCP)的自然自组装相结合来实现,以创造具有以下能力的新型聚合物材料:形成多个连续的组件。该提案有两个具体目标。首先,将合成含有导电嵌段的新型网络形成ABC三嵌段共聚物。这些材料将被设计为包含产生界面曲率和鞍形表面所需的嵌段共聚物体积分数,这是纳米级网络的标志。此外,聚合物的化学连通性将被设计为限制导电(棒)块的结晶,以保持网络形态。接下来,将通过散射、显微镜和机械分析技术来表征膜结构;膜电导率(和迁移率)也将使用四点探针测量和介电光谱进行检查。所提出的纳米级网络形态相对于层和圆柱形通道具有优异的机械属性,并且它们的渗透互连域和大界面面积提供了创建具有定制传输、化学和机械性能的导电材料的机会。这些因素将导致聚合物共混系统的显着改进,在聚合物共混系统中,创建均匀尺寸的连续传导和传输路径是提高聚合物器件效率的关键障碍。 更广泛的影响:在聚合物共混系统中创建连续纳米级传导路径的能力有机薄膜对于有机材料的进一步开发和使用至关重要,因为域边界处较差的电子性能通常会限制整体器件性能。对于发光二极管 (LED)、薄膜晶体管 (TFT) 和光伏器件 (PV) 来说,这一点尤其值得关注,因为改善传输对于这些器件的电子活性层至关重要。虽然文献中已经报道了 rr-P3AT BCP 的合成,但这项工作旨在对其设计进行创新。具体而言,上述共聚物将含有一种赋予韧性的嵌段;用于提供可结晶嵌段的限制的第二嵌段;第三嵌段是可结晶且导电的。这项工作的一个新颖之处在于,对导电 rr-P3AT 嵌段的化学性质进行了修改,以降低结晶温度,因此结晶不会改变整体自组装嵌段共聚物的结构。拟议的研究将为棒线圈嵌段共聚物成分、形态和电子性能之间的相互作用提供新的见解。总的来说,这预计将导致 CP 形态和电子性能的优化。此外,这个跨学科项目将培训研究生和本科生,以应对纳米技术中的关键科学和工程挑战。具体的更广泛的影响和教育举措的重点是增加代表性不足群体的参与。其中包括:通过 PI 参与 ACS 多样性合作伙伴计划和少数族裔学者计划,提供夏季研究和指导机会。此外,联合 PI 参与爱荷华州立大学 [ISU] 的多个项目(AGEP、新生荣誉课程和 NOBCChE)将用于从代表性不足的群体中招募研究生到 ISU。最后,我们建议特拉华大学化学工程系和 ISU 化学系之间进行学生交换,以拓宽他们的研究知识基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Epps其他文献

Thomas Epps的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Epps', 18)}}的其他基金

University of Delaware MRSEC - Center for Hybrid, Active, and Responsive Materials (CHARM)
特拉华大学 MRSEC - 混合活性响应材料中心 (CHARM)
  • 批准号:
    2011824
  • 财政年份:
    2020
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Cooperative Agreement
GCR: Life Cycle Management of Materials: Sustainable Biomass to Designer Polymer Systems
GCR:材料的生命周期管理:从可持续生物质到设计聚合物系统
  • 批准号:
    1934887
  • 财政年份:
    2019
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Continuing Grant
EAPSI: Connecting Distributed Impacts in Urban Watersheds to In-stream Hydrology and Water Quality Observations through Refined Landscape Metrics for Optimal Stormwater Handling
EAPSI:通过精细的景观指标将城市流域的分布式影响与河流内水文和水质观测联系起来,以实现最佳雨水处理
  • 批准号:
    1613598
  • 财政年份:
    2016
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Fellowship Award
Future Faculty Workshop: Grooming Diverse Leaders for the Future, Summers of 2016-2018
未来教师研讨会:为未来培养多元化的领导者,2016-2018 年夏季
  • 批准号:
    1642025
  • 财政年份:
    2016
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
GOALI: Directed Self-Assembly of Linear and Star Block Copolymer Thin Films - Oriented Nanostructures with Reduced Feature Sizes via Raster Annealing
GOALI:线性和星形嵌段共聚物薄膜的定向自组装 - 通过光栅退火缩小特征尺寸的定向纳米结构
  • 批准号:
    1610134
  • 财政年份:
    2016
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Continuing Grant
SusChEM: Biobased Platform for the Sustainable Molecular Design and Controlled Synthesis of Block Polymers from Renewable Feedstocks
SusChEM:用于从可再生原料中进行嵌段聚合物的可持续分子设计和受控合成的生物基平台
  • 批准号:
    1507010
  • 财政年份:
    2015
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
SusChEM: BPA Replacement with Non-Toxic Biobased Monomers
SusChEM:用无毒生物基单体替代 BPA
  • 批准号:
    1506623
  • 财政年份:
    2015
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
Tapered Block Copolymers: Interfacial Manipulation and Nanoscale Network Formation in Bulk and Thin Film Materials
锥形嵌段共聚物:块状和薄膜材料中的界面操纵和纳米级网络形成
  • 批准号:
    1207041
  • 财政年份:
    2012
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
Travel Support for Domestic Invited Speakers to Attend the "Emerging Areas in Polymer Science and Engineering" Program at the 2012 AIChE Fall Meeting
为国内特邀演讲者参加2012年AIChE秋季会议“高分子科学与工程新兴领域”项目提供差旅费
  • 批准号:
    1242289
  • 财政年份:
    2012
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
CAREER: Controlling Block Copolymer Interactions using Tapering between Blocks to Stabilize Networks
职业:利用嵌段之间的渐缩控制嵌段共聚物相互作用以稳定网络
  • 批准号:
    0645586
  • 财政年份:
    2007
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Continuing Grant

相似国自然基金

“铠甲”催化剂电子结构调控及稳定催化硫还原反应机理研究
  • 批准号:
    52302243
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
  • 批准号:
    12305275
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维卤化锇OsMxNy(M/N=F,Cl,Br,I)的电子结构、磁结构及磁激发理论研究
  • 批准号:
    12304079
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于单分子电子学技术研究寡聚苯胺分子间导电机制
  • 批准号:
    22305199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多维度高次谐波谱中的多电子动力学研究
  • 批准号:
    12304304
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: EAGER: Insights into the Hydrogen Evolution Reaction of Transition Metal Dichalcogenide Nanocrystals by In-situ Electron Paramagnetic Resonance Spectroscopy
合作研究:EAGER:通过原位电子顺磁共振波谱洞察过渡金属二硫族化物纳米晶体的析氢反应
  • 批准号:
    2302783
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
  • 批准号:
    2225370
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
  • 批准号:
    2246509
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Insights into the Hydrogen Evolution Reaction of Transition Metal Dichalcogenide Nanocrystals by In-situ Electron Paramagnetic Resonance Spectroscopy
合作研究:EAGER:通过原位电子顺磁共振波谱洞察过渡金属二硫族化物纳米晶体的析氢反应
  • 批准号:
    2302782
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Standard Grant
Environmental Agents as Modulators of Disease Processes
环境因素作为疾病过程的调节剂
  • 批准号:
    10852393
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了