Tapered Block Copolymers: Interfacial Manipulation and Nanoscale Network Formation in Bulk and Thin Film Materials

锥形嵌段共聚物:块状和薄膜材料中的界面操纵和纳米级网络形成

基本信息

  • 批准号:
    1207041
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-01 至 2016-11-30
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:As future technological progress necessitates the design and control of nanoscale membranes, new methods for the creation of tailored materials with tunable morphology, processability, transport properties, and mechanical properties must be perfected. Unfortunately, many designer systems require a tradeoff between incorporating the desired chemical constituents and obtaining the optimal chemical, transport, and mechanical properties. To overcome this dilemma, the Epps group is developing interfacially-modified triblock copolymer systems, with a specific focus on network-forming materials, through the chemical manipulation of the internal (block-to-block) junctions using compositional tapers. These interfacial manipulations (tapered junctions) will allow decoupling of the influence of chemical constituents and molecular weight from self-assembly and thermal transitions, providing greater versatility in designing these soft materials. Such triblock copolymers are capable of self-assembling into co-continuous network structures, making them ideal candidates for nanoscale devices. The combination of triblocks and tapered block copolymers can produce high-molecular-weight network systems with improved mechanical properties (e.g. entangled polymer chains), where tapering between the blocks allows for the controlled tuning of effective interaction parameters and nanoscale interfacial mixing. Further, by developing greater control over interfacial interactions, the Epps group will generate new nanostructured materials for applications such as conducting membranes, separation membranes, and nanoscale templates. This control will facilitate the development of universal protocols for the generation of stable, processable, and tunable networks for bulk membrane and thin-film nanoscale applications. Such nanoscale networks utilizing tapered block copolymers may also be helpful for alternative energy, data storage, and biological applications. NON-TECHNICAL SUMMARY:As future technological progress necessitates the design and control of nanoscale membranes, new methods for the creation of tailored materials with tunable morphology, processability, transport properties, and mechanical properties must be perfected. Unfortunately, many designer systems require a tradeoff between incorporating the desired chemical constituents and obtaining the optimal chemical, transport, and mechanical properties. To overcome this dilemma, the Epps group is developing chemical synthesis methods to control the nanometer scale (1/1000th the width of a human hair) interfaces in membrane materials to permit the independent tuning of those chemical, transport, and mechanical properties. By using specially modified complex polymers to enable the design, synthesis, and stabilization of nanoscale interfaces, novel materials for analytical separation membranes, ion-conduction membranes, and nanoscale templates may be developed for alternative energy, data storage, and biological applications. Additionally, this interdisciplinary project will train students to address key scientific and engineering challenges in nanotechnology. Students will explore aspects of chemistry, chemical engineering, and materials science, placing them at the forefront of nanotechnology research. Outreach activities directly related to the project include providing multidisciplinary summer research and mentorship opportunities in Epps' labs for American Chemical Society (ACS) Minority Scholars Program undergraduates and ACS Project SEED (economically-disadvantaged) high school students. The PI has been active in activities involving underrepresented groups in science and will continue to do so throughout this project.
技术摘要:由于未来的技术进步需要纳米级膜的设计和控制,因此必须完善创建具有可调形态、可加工性、传输性能和机械性能的定制材料的新方法。 不幸的是,许多设计系统需要在加入所需化学成分和获得最佳化学、传输和机械性能之间进行权衡。 为了克服这一困境,Epps 小组正在开发界面改性的三嵌段共聚物系统,特别关注网络形成材料,通过使用成分锥度对内部(块到块)连接进行化学操作。 这些界面操作(锥形连接)将能够消除化学成分和分子量对自组装和热转变的影响,从而在设计这些软材料时提供更大的多功能性。 这种三嵌段共聚物能够自组装成共连续网络结构,使其成为纳米级器件的理想候选者。 三嵌段和递变嵌段共聚物的组合可以产生具有改进的机械性能的高分子量网络系统(例如缠结的聚合物链),其中嵌段之间的递变允许有效相互作用参数和纳米级界面混合的受控调节。 此外,通过开发对界面相互作用的更好控制,Epps 小组将生产新的纳米结构材料,用于导电膜、分离膜和纳米级模板等应用。 这种控制将促进通用协议的开发,用于为体膜和薄膜纳米级应用生成稳定、可处理和可调谐的网络。 这种利用递变嵌段共聚物的纳米级网络也可能有助于替代能源、数据存储和生物应用。非技术摘要:由于未来的技术进步需要纳米级膜的设计和控制,因此必须完善创建具有可调节形态、可加工性、传输性能和机械性能的定制材料的新方法。 不幸的是,许多设计系统需要在加入所需化学成分和获得最佳化学、传输和机械性能之间进行权衡。 为了克服这一困境,Epps 小组正在开发化学合成方法来控制膜材料中的纳米级(人类头发宽度的 1/1000)界面,从而允许独立调节这些化学、传输和机械性能。 通过使用特殊改性的复杂聚合物来实现纳米级界面的设计、合成和稳定,可以开发用于分析分离膜、离子传导膜和纳米级模板的新型材料,用于替代能源、数据存储和生物应用。 此外,这个跨学科项目将培训学生解决纳米技术中的关键科学和工程挑战。 学生将探索化学、化学工程和材料科学的各个方面,使他们处于纳米技术研究的前沿。 与该项目直接相关的外展活动包括在 Epps 实验室为美国化学会 (ACS) 少数民族学者计划本科生和 ACS 项目 SEED(经济弱势)高中生提供多学科夏季研究和指导机会。 PI 一直积极参与涉及科学领域代表性不足群体的活动,并将在整个项目中继续这样做。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Epps其他文献

Thomas Epps的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Epps', 18)}}的其他基金

University of Delaware MRSEC - Center for Hybrid, Active, and Responsive Materials (CHARM)
特拉华大学 MRSEC - 混合活性响应材料中心 (CHARM)
  • 批准号:
    2011824
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Cooperative Agreement
GCR: Life Cycle Management of Materials: Sustainable Biomass to Designer Polymer Systems
GCR:材料的生命周期管理:从可持续生物质到设计聚合物系统
  • 批准号:
    1934887
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
EAPSI: Connecting Distributed Impacts in Urban Watersheds to In-stream Hydrology and Water Quality Observations through Refined Landscape Metrics for Optimal Stormwater Handling
EAPSI:通过精细的景观指标将城市流域的分布式影响与河流内水文和水质观测联系起来,以实现最佳雨水处理
  • 批准号:
    1613598
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Fellowship Award
Future Faculty Workshop: Grooming Diverse Leaders for the Future, Summers of 2016-2018
未来教师研讨会:为未来培养多元化的领导者,2016-2018 年夏季
  • 批准号:
    1642025
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
GOALI: Directed Self-Assembly of Linear and Star Block Copolymer Thin Films - Oriented Nanostructures with Reduced Feature Sizes via Raster Annealing
GOALI:线性和星形嵌段共聚物薄膜的定向自组装 - 通过光栅退火缩小特征尺寸的定向纳米结构
  • 批准号:
    1610134
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
SusChEM: Biobased Platform for the Sustainable Molecular Design and Controlled Synthesis of Block Polymers from Renewable Feedstocks
SusChEM:用于从可再生原料中进行嵌段聚合物的可持续分子设计和受控合成的生物基平台
  • 批准号:
    1507010
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
SusChEM: BPA Replacement with Non-Toxic Biobased Monomers
SusChEM:用无毒生物基单体替代 BPA
  • 批准号:
    1506623
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Travel Support for Domestic Invited Speakers to Attend the "Emerging Areas in Polymer Science and Engineering" Program at the 2012 AIChE Fall Meeting
为国内特邀演讲者参加2012年AIChE秋季会议“高分子科学与工程新兴领域”项目提供差旅费
  • 批准号:
    1242289
  • 财政年份:
    2012
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: ELECTRON TRANSPORT MEMBRANE USING NANOSTRUCTURED BLOCK COPOLYMER ASSEMBLIES
合作研究:使用纳米结构嵌段共聚物组件的电子传输膜
  • 批准号:
    0930986
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
CAREER: Controlling Block Copolymer Interactions using Tapering between Blocks to Stabilize Networks
职业:利用嵌段之间的渐缩控制嵌段共聚物相互作用以稳定网络
  • 批准号:
    0645586
  • 财政年份:
    2007
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于准东高碱煤的流化床气化炉风帽堵塞物形成机制与预防策略研究
  • 批准号:
    22368045
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于典型堵塞机理及壳体振动短时特征自学习的轴流脱分系统趋堵诊断研究
  • 批准号:
    52375249
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
黄河三角洲微咸水滴灌施肥系统灌水器无机-有机耦合堵塞机理与调控模式
  • 批准号:
    52309054
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
滴灌用劣质水泵前微压过滤器物理-生物堵塞特性及诱发机制研究
  • 批准号:
    52369013
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
纹层状页岩油CO₂吞吐沥青质表面与堵塞沉积机理及调控方法
  • 批准号:
    52304045
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: CAS: Structured Assemblies of Block Copolymers and Macrocycles with the Novel Halogen Bond
职业:CAS:具有新型卤素键的嵌段共聚物和大环化合物的结构化组装体
  • 批准号:
    2236984
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
FuSe: Precise Sequence Specific Block Copolymers for Directed Self-Assembly - Co-Design of Lithographic Materials for Pattern Quality, Scaling, and Manufacturing
FuSe:用于定向自组装的精确序列特定嵌段共聚物 - 用于图案质量、缩放和制造的光刻材料的协同设计
  • 批准号:
    2329133
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Solid-state supramolecular polymers: a new era for polymer science
固态超分子聚合物:高分子科学的新时代
  • 批准号:
    22KF0396
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Block copolymers and Ionic Liquids for Data Storage (BILDS)
用于数据存储的嵌段共聚物和离子液体 (BILDS)
  • 批准号:
    EP/X021386/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Fellowship
CAS: Lewis Pair Polymerization: Compounded Sequence and Spatiotemporal Controls for Precision Synthesis of Sustainable Linear and Cyclic Block Copolymers
CAS:路易斯对聚合:用于精确合成可持续线性和环状嵌段共聚物的复合序列和时空控制
  • 批准号:
    2305058
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了