Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
基本信息
- 批准号:2225370
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical DescriptionThe growth of the information economy and the rising importance of artificial intelligence are driving a need for dramatically increased computing power. Such demands cannot be met at the required pace using existing semiconductor technologies. In addition, energy requirements to power the massive increase in computing and data storage may present a serious limitation to how much and how fast information can be processed. New energy-efficient technologies are therefore urgently needed. This research project brings together a team with combined expertise in theory, synthesis, and advanced characterization. The team will design and synthesize novel molecules and develop new characterization methods in order to pave the way to electronic devices that operate at the ultimate size limit of single molecules. This research will enable efficient charge flow and switching in single molecules and allow for the creation of high-density low-power electronics. The investigators will further demonstrate how quantum phenomena can be used in single molecule devices to encode information in new and efficient ways, and to minimize power consumption in high-density molecular arrays. The research team will train undergraduate and graduate students from underrepresented groups, educate future scientific leaders from traditionally underserved rural and urban communities, and involve veterans who transition from the armed services into higher education.Technical DescriptionDespite extensive research to understand quantum transport in single molecule electronic devices, a predictive and generalizable molecular-level understanding of how to systematically tailor charge- and spin-transport through molecules is still missing. The emergence of such an understanding is hampered by the complex many-body interactions at the molecule-electrode interface and the wide variation of different molecular constructs investigated. The proposed theory-driven research addresses this challenge by i) systematically varying the organic semiconductor framework to tailor the combined molecule/electrode system, to capture the outsized influence of interfacial interactions on energy level alignment and hence conductance in single molecule junctions; and ii) seeking to significantly enhance charge-transport or to create pathways towards spin-polarized current using systematically designed all-organic radicals. Insights from the proposed research provide new design rules for controlling charge-flow in single molecules and across molecule-electrode interfaces at will. Investigators will also develop key principles that enable the flow of spin-current without the need for ferromagnetic electrodes. These issues are fundamental themes in the materials science of organic semiconductors that transcend the specific classes of molecules and the specific challenges of quantum transport in single molecules. They pertain to the field of organic electronics more broadly, encompassing molecular and thin film organic electronics. The synergistic research, combining synthesis of new materials, materials by design and characterization at the single molecule limit, lays the foundation for improved energy-efficiency in high-performance computing and data analysis, which ultimately enables new information processing modalities with potentially unprecedented impact on US manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述信息经济的增长和人工智能的重要性日益提高,推动了对计算能力大幅提高的需求。使用现有的半导体技术无法以所需的速度满足此类需求。此外,为计算和数据存储的大量增加提供动力的能源需求可能会对信息的处理量和速度造成严重限制。因此迫切需要新的节能技术。该研究项目汇集了一支在理论、合成和高级表征方面具有综合专业知识的团队。该团队将设计和合成新型分子并开发新的表征方法,以便为在单分子最终尺寸限制下运行的电子设备铺平道路。这项研究将实现单分子中的高效电荷流动和切换,并允许创建高密度低功耗电子产品。研究人员将进一步演示如何在单分子设备中使用量子现象,以新的有效方式编码信息,并最大限度地减少高密度分子阵列的功耗。该研究团队将培训来自弱势群体的本科生和研究生,教育传统上服务不足的农村和城市社区的未来科学领袖,并吸收从武装部队过渡到高等教育的退伍军人。技术描述尽管进行了大量研究以了解单分子电子中的量子输运对于如何通过分子系统地调整电荷和自旋传输的预测性和可推广的分子水平理解仍然缺乏。这种理解的出现受到分子-电极界面上复杂的多体相互作用以及所研究的不同分子结构的广泛变化的阻碍。所提出的理论驱动研究通过以下方式解决了这一挑战:i)系统地改变有机半导体框架以定制组合的分子/电极系统,以捕获界面相互作用对能级排列以及单分子结电导的巨大影响; ii) 寻求使用系统设计的全有机基团显着增强电荷传输或创建通向自旋极化电流的途径。拟议研究的见解提供了新的设计规则,用于随意控制单分子中以及跨分子电极界面的电荷流。研究人员还将开发无需铁磁电极即可实现自旋电流流动的关键原理。这些问题是有机半导体材料科学的基本主题,超越了特定类别的分子和单分子量子传输的特定挑战。它们更广泛地属于有机电子领域,包括分子和薄膜有机电子。协同研究将新材料的合成、设计材料和单分子极限表征相结合,为提高高性能计算和数据分析的能源效率奠定了基础,最终使新的信息处理模式成为可能,对人类产生前所未有的影响。美国制造业。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manuel Smeu其他文献
Modified Born method for modeling melting temperature using ab initio molecular dynamics
使用从头算分子动力学模拟熔化温度的改进 Born 方法
- DOI:
10.1088/1361-648x/acdb25 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michael Woodcox;Joshua Young;Manuel Smeu - 通讯作者:
Manuel Smeu
Hapticity-dependent charge transport through carbodithioate-terminated [5,15-bis(phenylethynyl)porphinato]zinc(II) complexes in metal-molecule-metal junctions.
通过金属-分子-金属连接中的二硫代碳酸酯封端的[5,15-双(苯乙炔基)卟啉]锌(II)络合物进行触觉依赖性电荷传输。
- DOI:
10.1021/nl502466a - 发表时间:
2014 - 期刊:
- 影响因子:10.8
- 作者:
Zhihai Li;Manuel Smeu;T. Park;Jeff Rawson;Y. Xing;M. Therien;M. Ratner;E. Borguet - 通讯作者:
E. Borguet
Theoretical investigation of Chevrel phase materials for cathodes accommodating Ca2+ ions
用于容纳 Ca2 离子的阴极 Chevrel 相材料的理论研究
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Manuel Smeu;Manuel Smeu;S. Hossain;Z. Wang;V. Timoshevskii;K. Bevan;K. Zaghib - 通讯作者:
K. Zaghib
Atomistic simulation of the structural and conductance evolution of Au break junctions
金断裂结的结构和电导演化的原子模拟
- DOI:
10.1016/j.commatsci.2019.04.013 - 发表时间:
2019 - 期刊:
- 影响因子:3.3
- 作者:
Mo Li;Manuel Smeu - 通讯作者:
Manuel Smeu
Conduction modulation of π-stacked ethylbenzene wires on Si(100) with substituent groups
带取代基的 Si(100) 上 π 堆叠乙苯线的传导调制
- DOI:
10.1007/s00214-011-1085-7 - 发表时间:
2012 - 期刊:
- 影响因子:1.7
- 作者:
Manuel Smeu;R. Wolkow;Hong Guo - 通讯作者:
Hong Guo
Manuel Smeu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
稀土掺杂钙钛矿纳米材料量子剪裁发光中的材料设计、机理研究与光伏应用
- 批准号:12374379
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于芳香胺分子剪裁的手性钙钛矿量子点及其高效圆偏振发光特性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超材料的可变形机翼蒙皮气动弹性剪裁方法与实验研究
- 批准号:52202430
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于偏振调控/能带剪裁的高效AlGaN基深紫外LED的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
超宽禁带半导体ZnGa2O4掺杂调控及能带剪裁研究
- 批准号:U21A2071
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:
相似海外基金
Collaborative Research: Tailoring the Catalytic Properties of Pd Single Atoms Using Covalent Organic Frameworks
合作研究:利用共价有机框架定制 Pd 单原子的催化性能
- 批准号:
2308630 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
- 批准号:
2225369 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Collaborative Research: Tailoring the Catalytic Properties of Pd Single Atoms Using Covalent Organic Frameworks
合作研究:利用共价有机框架定制 Pd 单原子的催化性能
- 批准号:
2308631 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
- 批准号:
2312247 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant