MRI: Acquisition of a Hybrid Diamond/III-N Synthesis Cluster Tool
MRI:获得混合金刚石/III-N 合成簇工具
基本信息
- 批准号:0923215
- 负责人:
- 金额:$ 42.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-10-01 至 2012-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0923215Johnston-HalperinOhio State U. Res. Fdn.Technical Summary: Wide bandgap semiconductors, and in particular III-Ns and diamond, are emerging as a powerful force for innovation across a wide spectrum of science and technology. This breadth of potential is captured by the extraordinary diversity of the interdisciplinary team assembled for this proposal, with research interests ranging over 15 orders of magnitude in energy (from ~1 meV to ~ 1,000 TeV), 13 orders of magnitude in time (~ 100 fs to ~ 1 ms), and 11 orders of magnitude in length (from ~ 1 nm to ~ 10 cm). This diversity provides a unique and powerful opportunity, by optimizing a relatively modest set of material parameters: electron mobility, spin relaxation time, electron-hole recombination time and structural quality, it is possible to have a transformative impact across a truly broad front of leading edge research. This optimization will require the rapid development of these emerging materials, necessitating a tight coupling between high quality materials synthesis and precise materials characterization informed by a fundamental understanding of the science underlying these diverse applications. The collaborative network presented here, including the PIs and both on-site and off-site collaborators, posses the necessary expertise as well as the necessary infrastructure in materials characterization to exploit this unique opportunity; the only piece lacking is the appropriate infrastructure for materials synthesis. As a result, the acquisition of the hybrid diamond/III-N synthesis cluster tool proposed here will have an immediate impact on a wide spectrum of active research programs as well as providing interdisciplinary collaborations with the necessary infrastructure to successfully compete in this rapidly developing area of materials science. The proposed tool will consist of two growth chambers, one optimized for microwave-plasma chemical vapor deposition (MPCVD) of diamond films, and the other optimized for ammonia-based molecular beam epitaxy (MBE) of III-N epilayers. The chambers are linked by an air-free glove box and an ultra-high vacuum (UHV) transfer line, allowing for in situ sample transfer and high quality heterostructure growth. Finally, the diversity of this collaboration will lead directly to the training of graduate and undergraduate students who are optimally positioned to take advantage of increasingly interdisciplinary opportunities in both the academic and industrial workforce.Layman Summary: The objective of this project is to establish a materials fabrication facility to investigate the properties of new nanoscale materials based on diamond and III-N semiconductors. Wide bandgap semiconductors, and in particular III-Ns and diamond, are emerging as a powerful force for innovation across a wide spectrum of science and technology. Research in this area will benefit industries including magnetoelectronics/spintronics, high-speed electronics, solid state lighting, photovoltaics, and energy-efficient transportation. This breadth of potential is captured by the extraordinary diversity of the interdisciplinary team assembled for this proposal, with affiliations including Materials Science and Engineering, Electrical and Computer Engineering, Condensed Matter Physics and High Energy Physics and research interests ranging over 15 orders of magnitude in energy, 13 orders of magnitude in time and 11 orders of magnitude in length. For example, this variation is equivalent to temperatures from 10° C above absolute zero to 1 million times hotter than the sun, the difference in time between 1 millionth of a second and the age of the earth and sizes ranging from several atoms to the size of a cell phone. As a consequence, the acquisition of the hybrid diamond/III-N synthesis cluster tool proposed here will have an immediate impact on a wide spectrum of active research programs, laying the groundwork for fundamental discoveries and new technology and providing training for graduate and undergraduate students in emerging interdisciplinary applications of fundamental materials science research.
0923215Johnston-Halperinohio State U. FDN.技术摘要:宽带的带隙半导体,尤其是III-NS和Diamond,成为了各种科学技术的创新力量的强大力量。跨学科团队的非凡多样性占据了这一建议,研究兴趣的范围超过15个数量级(从〜1 meV到〜1,000 teV),时间(〜100 fs至〜1 ms),长度为11米(从〜1 nm 〜1 nm 〜1 10 cm 〜10 cm〜10cm)。这种多样性通过优化相对适度的材料参数提供了独特而强大的机会:电子移动性,旋转放松时间,电子孔重组时间和结构性质量,可以在前沿研究的真正广泛的方面产生变革性的影响。优化将需要快速开发这些新兴材料,高质量材料合成和精确材料之间的必要耦合,这是通过对这些潜水员应用的基本科学的基本理解所带来的。这里介绍的合作网络,包括PIS以及现场和现场合作者,都具有必要的专业知识以及材料表征中必要的基础架构,以利用这一独特的机会;唯一缺乏的作品是材料合成的适当基础设施。结果,此处提出的Hybrid Diamond/III-N合成集群工具的获取将对广泛的活跃研究计划产生直接影响,并提供与必要的基础设施的跨学科合作,以成功地在这种快速发展的材料科学领域中成功竞争。该提出的工具将由两个生长室组成,一个用于钻石膜的微波 - 血浆化学蒸气沉积(MPCVD),另一个针对III-N EPILAYER的氨基束的外观(MBE)的分子束支配(MBE)进行了优化。腔室由无气杂志盒和超高真空(UHV)转移线连接,从而可以原位样品转移和高质量的异质结构生长。最后,这项合作的多样性将直接导致对学术和工业劳动力中越来越多地利用越来越多的跨学科机会的研究生和本科生的培训。Layman摘要:该项目的目的是建立一个物质制造设施,以研究基于Diamons和III-N-N-N-N-NEMOCODERS的新Nanoscale材料的物业。宽阔的带隙半导体,尤其是III-NS和Diamond,正成为各种科学技术的创新力量的强大力量。该领域的研究将使包括磁性/旋转型,高速电子,固态照明,光伏和节能运输等行业有益于行业。跨学科团队的非凡多样性为该提案组成,包括材料科学和工程,电气和计算机工程,电气和计算机工程,凝结物理学以及高能量物理学以及高能量物理学和研究兴趣在15个数量级以上的能源范围内,时间为13个数量级,而在时间上增加了11个级数。例如,这种变化相当于比太阳高于绝对零高至100万倍的温度,地球年龄和地球年龄的100万之间的时间差,尺寸从几个原子到手机的大小不等。结果,此处提出的混合钻石/III-N合成集群工具的获取将对广泛的活跃研究计划产生直接影响,为基本发现和新技术奠定了基础,并为研究生和培训提供了在新兴的学生和本科生中的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ezekiel Johnston-Halperin其他文献
Membrane Tension Dictates the Spatiotemporal Heterogeneity of Endocytic Clathrin Coat Dynamics in Cells
- DOI:
10.1016/j.bpj.2017.11.1614 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Nathan M. Willy;Joshua Ferguson;Scott Huber;Spencer Heidotting;Esra Aygun;Sarah Wurm;Ezekiel Johnston-Halperin;Michael Poirier;Comert Kural - 通讯作者:
Comert Kural
Ezekiel Johnston-Halperin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ezekiel Johnston-Halperin', 18)}}的其他基金
NSF Convergence Accelerator- Track C: QuSTEAM: Convergent undergraduate education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
- 批准号:
2134832 - 财政年份:2021
- 资助金额:
$ 42.13万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator- Track C: QuSTEAM: Convergent Undergraduate Education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
- 批准号:
2040581 - 财政年份:2020
- 资助金额:
$ 42.13万 - 项目类别:
Standard Grant
QII-TAQS: Solid State Integration of Molecular Qubits
QII-TAQS:分子量子位的固态集成
- 批准号:
1936219 - 财政年份:2019
- 资助金额:
$ 42.13万 - 项目类别:
Continuing Grant
Collaborative Research: High-Q Magnon Crystals and Emergent Topological Phases
合作研究:高Q磁振子晶体和涌现拓扑相
- 批准号:
1808704 - 财政年份:2018
- 资助金额:
$ 42.13万 - 项目类别:
Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
- 批准号:
1741666 - 财政年份:2017
- 资助金额:
$ 42.13万 - 项目类别:
Standard Grant
New Directions for Organic Spintronics: Organic-Based Magnetic Heterostructures and Microwave Magnetodynamics
有机自旋电子学的新方向:有机基磁性异质结构和微波磁动力学
- 批准号:
1507775 - 财政年份:2015
- 资助金额:
$ 42.13万 - 项目类别:
Standard Grant
Electrical Spin Injection at Chemically Modified Organic/Inorganic Interfaces
化学改性有机/无机界面的电自旋注射
- 批准号:
1207243 - 财政年份:2012
- 资助金额:
$ 42.13万 - 项目类别:
Continuing Grant
SGER: Sublithographic Patterning of Nanoscale Spintronic Devices
SGER:纳米级自旋电子器件的亚光刻图案化
- 批准号:
0721633 - 财政年份:2007
- 资助金额:
$ 42.13万 - 项目类别:
Standard Grant
相似国自然基金
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高磁感取向硅钢表面氧化层内传质与获得抑制剂演变机理研究
- 批准号:52374316
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
线粒体三羧酸循环酶入核调控小鼠二细胞期全能性获得的功能和机制研究
- 批准号:32300608
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社区获得性MRSA家庭传播动态及干预措施的Ross-Macdonald动力学模型仿真研究
- 批准号:82360657
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
核糖体蛋白RPL35A调节FOXO1与SIRT2乙酰化解离诱导自噬促进非小细胞肺癌发生发展及获得性耐药的机制研究
- 批准号:82360461
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Hybrid TMS/MRI system for regionally tailored causal mapping of human cortical circuits and connectivity
混合 TMS/MRI 系统,用于按区域定制人类皮质回路和连接的因果图谱
- 批准号:
10730783 - 财政年份:2023
- 资助金额:
$ 42.13万 - 项目类别:
Hybrid Intelligence for Trustable Diagnosis And Patient Management of Prostate Cancer (HIT-PIRADS)
用于前列腺癌可信诊断和患者管理的混合智能 (HIT-PIRADS)
- 批准号:
10611212 - 财政年份:2023
- 资助金额:
$ 42.13万 - 项目类别:
MRI: Track 1 Acquisition of a Real-Time Hybrid Simulation Testing System for Cyber-Physical Research and Training
MRI:轨道 1 获取用于网络物理研究和培训的实时混合仿真测试系统
- 批准号:
2320379 - 财政年份:2023
- 资助金额:
$ 42.13万 - 项目类别:
Standard Grant
MRI: Acquisition of Autonomous Plug-In Hybrid Vehicle Platform for Multidisciplinary Research and Education at the University of Michigan-Dearborn
MRI:收购密歇根大学迪尔伯恩分校用于多学科研究和教育的自主插电式混合动力汽车平台
- 批准号:
2214830 - 财政年份:2022
- 资助金额:
$ 42.13万 - 项目类别:
Standard Grant
MRI: Acquisition of a High Performance Hybrid Computer Cluster for Computational Modeling
MRI:获取用于计算建模的高性能混合计算机集群
- 批准号:
2117247 - 财政年份:2021
- 资助金额:
$ 42.13万 - 项目类别:
Standard Grant