New Directions for Organic Spintronics: Organic-Based Magnetic Heterostructures and Microwave Magnetodynamics
有机自旋电子学的新方向:有机基磁性异质结构和微波磁动力学
基本信息
- 批准号:1507775
- 负责人:
- 金额:$ 39.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical Description: The push towards "ubiquitous computing," the inclusion of small-scale and low-power computing devices in everyday objects ranging from appliances, to clothing, to packaging, has emerged as a new driver that is pushing information technology off the desktop (or the laptop) and into every aspect of our world. The study of organic electronics is playing a major role in this new paradigm due to the mechanical flexibility, low cost, and ease of manufacturing enabled by these materials. Early signs of the success of this approach can be found in the commercial development of flexible display technologies based on organic light-emitting diodes and organic thin film transistors. However, this new technology is currently limited by the lack of non-volatile organic memory elements, i.e. the ability for a device to remember what it has been doing once the power is turned off. This project focuses on addressing this gap through the development of organic-based magnetic materials and the devices enabled by them. It is focused on developing the new materials, new devices, and new fundamental understanding necessary to translate the potential of these organic-based magnets into a realistic complement to the optical and electronic functionality already demonstrated for organic electronics. In addition, this project serves as training ground for the next generation of young researchers that will drive this evolving technical revolution. Recent graduates of the PI's group have moved on to positions at Samsung, Intel and science policy institutes, and current training has been integrated with Ohio State University's Masters to PhD Bridge Program to enhance the diversity of our future STEM workforce. In its first two years of operation this Bridge Program has already increased the students from underrepresented minorities in the Department of Physics by 400%.Technical Description: This project extends the boundaries of organic electronics to include magnetic and spintronic functionality. This effort exploits recent scientific and technical breakthroughs to explore the growth of all-organic magnetic heterostructures and investigate the dynamic excitation of organic-based magnetic materials in two independent but correlated thrusts. In Thrust 1, work focuses on determining the structure-function relationship between the growth of organic-based magnets and their static and microwave-frequency magnetic properties. This work includes the growth of ferromagnet/non-magnetic bilayers, ferromagnet/non-magnet/ferromagnet heterostructures, and corrugated films with shape-induced in-plane magnetic anisotropy. Thrust 2 focuses on exploring dynamic excitations of these systems, including the investigation of electrically detected ferromagnetic resonance, ferromagnetic resonance driven spin pumping detected both via ferromagnetic resonance linewidth changes and inverse spin-Hall effect generated voltages, and spin-transfer torque based on the spin-Hall effect in high spin-orbit metals for ferromagnet/metal bilayers. Taken together, these two Thrusts are laying the foundation for a new conception of microwave-frequency organic spintronics and magnetoelectronics.
非技术描述:向“无处不在的计算”推动,将小规模和低功率计算设备包括在日常物品中,从设备,服装到包装,已成为一个新驱动程序,它正在将信息技术推向台式机(或笔记本电脑)以及我们世界各个方面。由于这些材料的机械灵活性,低成本和易于制造的制造,对有机电子产品的研究在这种新范式中发挥了重要作用。这种方法成功的早期迹象可以在基于有机发光二极管和有机薄膜晶体管的柔性显示技术的商业开发中找到。但是,这项新技术目前受到缺乏非挥发性有机内存元素的限制,即设备一旦关闭功率就可以记住它所做的事情的能力。该项目致力于通过开发有机的磁性材料和启用的设备来解决这一差距。它的重点是开发新材料,新设备和新的基本理解,将这些基于有机的磁铁的潜力转化为现实的补充到已经证明的有机电子产品的光学和电子功能。此外,该项目是下一代年轻研究人员的培训理由,这些研究人员将推动这场不断发展的技术革命。 PI小组的近期毕业生已继续担任三星,英特尔和科学政策研究所的职位,目前的培训已与俄亥俄州立大学的硕士学位纳入博士学位桥梁计划,以提高我们未来的STEM劳动力的多样性。在运营的头两年中,该桥梁计划已经将物理学部代表性不足的少数群体的学生增加了400%。技术描述:该项目扩展了有机电子设备的边界,以包括磁性和旋转功能。这项工作利用了最近的科学和技术突破来探索全有机磁异质结构的生长,并研究了两个独立但相关的推力中有机磁性材料的动态激发。在推力1中,工作着重于确定有机磁体的生长与其静态和微波频率磁性特性之间的结构功能关系。这项工作包括铁磁/非磁性双层,铁磁性/非磁铁/非马格网络异质结构以及具有形状诱导的平面磁各向异性的瓦楞膜。推力2的重点是探索这些系统的动态激发,包括对电磁磁性共振的研究,通过铁磁共振旋转泵驱动的旋转泵的研究,基于旋转的旋转效率/旋转金属效应。综上所述,这两个推力为微波频率有机旋转和磁性电子学的新概念奠定了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ezekiel Johnston-Halperin其他文献
Membrane Tension Dictates the Spatiotemporal Heterogeneity of Endocytic Clathrin Coat Dynamics in Cells
- DOI:
10.1016/j.bpj.2017.11.1614 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Nathan M. Willy;Joshua Ferguson;Scott Huber;Spencer Heidotting;Esra Aygun;Sarah Wurm;Ezekiel Johnston-Halperin;Michael Poirier;Comert Kural - 通讯作者:
Comert Kural
Ezekiel Johnston-Halperin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ezekiel Johnston-Halperin', 18)}}的其他基金
NSF Convergence Accelerator- Track C: QuSTEAM: Convergent undergraduate education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
- 批准号:
2134832 - 财政年份:2021
- 资助金额:
$ 39.99万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator- Track C: QuSTEAM: Convergent Undergraduate Education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
- 批准号:
2040581 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
QII-TAQS: Solid State Integration of Molecular Qubits
QII-TAQS:分子量子位的固态集成
- 批准号:
1936219 - 财政年份:2019
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
Collaborative Research: High-Q Magnon Crystals and Emergent Topological Phases
合作研究:高Q磁振子晶体和涌现拓扑相
- 批准号:
1808704 - 财政年份:2018
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
- 批准号:
1741666 - 财政年份:2017
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Electrical Spin Injection at Chemically Modified Organic/Inorganic Interfaces
化学改性有机/无机界面的电自旋注射
- 批准号:
1207243 - 财政年份:2012
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Hybrid Diamond/III-N Synthesis Cluster Tool
MRI:获得混合金刚石/III-N 合成簇工具
- 批准号:
0923215 - 财政年份:2009
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
SGER: Sublithographic Patterning of Nanoscale Spintronic Devices
SGER:纳米级自旋电子器件的亚光刻图案化
- 批准号:
0721633 - 财政年份:2007
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
相似国自然基金
碱性玄武岩-拉斑玄武岩-玻安岩约束的俯冲启动方向与机制:以青藏高原中部两条同期的中晚侏罗世蛇绿岩为例
- 批准号:42372087
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
考虑多维地震动及其方向性的曲线梁桥抗震韧性评估方法研究
- 批准号:52308211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
均一性金属辅助深硅刻蚀的方向调控机制研究
- 批准号:62304035
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多级分散体系下沥青砂浆负载形变方向性特征及其力学性能宏细观关联机制
- 批准号:52378435
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
染色质结构调控转录起始方向的研究
- 批准号:32370645
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
New Directions in Nickel and Photoredox Catalysis
镍和光氧化还原催化的新方向
- 批准号:
10623946 - 财政年份:2018
- 资助金额:
$ 39.99万 - 项目类别:
Molecules and mirrors: new directions in chemistry and organic optoelectronics using hybrid light or matter states
分子和镜子:使用混合光或物质状态的化学和有机光电子学的新方向
- 批准号:
DE130101300 - 财政年份:2013
- 资助金额:
$ 39.99万 - 项目类别:
Discovery Early Career Researcher Award
An Allenic Pauson-Khand Reaction, New Directions
艾伦尼克鲍森-坎德反应,新方向
- 批准号:
6579240 - 财政年份:1998
- 资助金额:
$ 39.99万 - 项目类别: