Workshop on Stochastic Multiscale Methods: Mathematical Analysis and Algorithms; August 2009, Los Angeles, CA
随机多尺度方法研讨会:数学分析和算法;
基本信息
- 批准号:0917661
- 负责人:
- 金额:$ 2.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Exchanging information across scales is one of the most significant challenges in multiscale modeling and simulation. By necessity, and naturally within a multiscale context, information is truncated as it is presented to a coarser scale, and is enriched as it traverses the opposite path. Information is lost and corrupted as it is, respectively, upscaled and downscaled. Mitigating these errors can be set on rigorous ground through a probabilistic description of information, whence finite-dimensional approximations of measures provides an analytical path for describing the coarsening and refining of information. Stochastic analysis, therefore, provides a rational context for the analysis of multiscale methods. This workshop on "Stochastic Multiscale Methods: Mathematical Analysis and Algorithms"will serve to define challenges and opportunities in the development of stochastic multiscale methods for various problems in science and engineering. Issues of uncertainty quantification, model validation, and optimization under uncertainty have taken center stage in many areas of science and engineering. Likewise, multiscale modeling and computing capabilities are becoming the standard against which model-based predictions are gauged. It thus behooves the scientific community, at this juncture, to elucidate the mathematical foundation of stochastic multiscale concepts so as to ensure a steady evolution of scientific capabilities as engines of economical growth societal well-being. This workshop will initiate a dialog between mathematicians, mechanicians, and computational scientists that will lay the foundation for an accelerated growth in stochastic multiscale methods.Rapid growth in computational resources has heightened the expectation that scientific knowledge can indeed be a driver for societal well-being and betterment. At the same time, our ability to measure the natural and social world around has significantly increased, aided by technological development in sensors, the internet, and other modalities of communication. Science is thus faced, simultaneously, with a complex description of reality at an unprecendented resolution, and the possibility to describe this reality with mathematical models of increasing complexity.Multiscale descriptions of physical problems can be viewed as attempts to take advantage of these new oppotunities, while tackling the conceptual challenges they inevitably present.The communities of stochastic analysis and computational science have evolved essentially along separate paths. The path forward, however, in the direction of disruptive scientific impact, requires significant exchange andcollaboration. It is the intent of this Workshop ``Stochastic Multiscale Methods:Mathematical Analysis and Algorithms'' to bring together leading researchers in these two fields with view to delineate new horizons and forge new synergies that will accelerate the evolution of multiscale capabilities to become an enabler of scientific and economic progress.
跨量表交换信息是多尺度建模和仿真中最重要的挑战之一。 必要时,自然而然地,在多尺度的环境中,信息被截断了,因为它被呈现为更粗糙的尺度,并且随着遍历相反的路径而富集。信息分别丢失和腐败,分别是高扫描和缩小的。 通过对信息的概率描述,可以在严格的基础上设置这些误差,措施的有限维近似值为描述信息的粗化和精炼提供了一个分析路径。因此,随机分析为分析多尺度方法提供了合理的背景。 这个关于“随机多尺度方法:数学分析和算法”的研讨会将有助于在开发科学和工程中各种问题的随机多尺度方法中定义挑战和机遇。 在不确定性下,不确定性量化,模型验证和优化的问题在许多科学和工程领域都占据了中心地位。 同样,多尺度建模和计算功能已成为测量基于模型的预测的标准。 因此,在这个关头,它应该理解科学界,以阐明随机多尺度概念的数学基础,以确保科学能力的稳定发展,因为经济增长社会健康的发动机。 该研讨会将启动数学家,技工和计算科学家之间的对话,这将为随机多尺寸方法的加速增长奠定基础。计算资源的影响增长增强了人们的期望,即科学知识确实可以成为社会健康和改善的驱动力。 同时,通过传感器,互联网和其他交流方式的技术发展,我们衡量自然和社会世界的能力已大大提高。 因此,科学是同时面对的,并以未固定的解决方案对现实进行了复杂的描述,并且有可能通过数学模型的数学模型来描述这种现实。对物理问题的数学描述可以看作是试图利用这些新的反对派的尝试,同时又可以解决这些概念性的挑战,而这些概念性既定不可能地均可置于现实状态。然而,朝着破坏性科学影响的方向前进,需要大量的交换和策略。 这是该研讨会的目的``随机多尺度方法:数学分析和算法'',将这两个领域的主要研究人员汇集在一起,以划定新的视野并造就新的协同作用,以加速多阶段能力的进化,以成为科学和经济进步的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Ghanem其他文献
Transient anisotropic kernel for probabilistic learning on manifolds
- DOI:
10.1016/j.cma.2024.117453 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Christian Soize;Roger Ghanem - 通讯作者:
Roger Ghanem
Switching diffusions for multiscale uncertainty quantification
多尺度不确定性量化的切换扩散
- DOI:
10.1016/j.ijnonlinmec.2024.104793 - 发表时间:
2024 - 期刊:
- 影响因子:3.2
- 作者:
Zheming Gou;Xiaohui Tu;Sergey V. Lototsky;Roger Ghanem - 通讯作者:
Roger Ghanem
Spectral Stochastic Finite Element Method for Log-Normal Uncertainty
求解对数正态不确定性的谱随机有限元法
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Riki Honda;Roger Ghanem - 通讯作者:
Roger Ghanem
Data-driven projection pursuit adaptation of polynomial chaos expansions for dependent high-dimensional parameters
- DOI:
10.1016/j.cma.2024.117505 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Xiaoshu Zeng;Roger Ghanem - 通讯作者:
Roger Ghanem
Roger Ghanem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Ghanem', 18)}}的其他基金
Collaborative Research: RIPS Type 1: Human Geography Motifs to Evaluate Infrastructure Resilience
合作研究:RIPS 类型 1:评估基础设施弹性的人文地理学主题
- 批准号:
1441190 - 财政年份:2014
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Accelerating Innovation in Agent-Based Simulations: Application to Complex Socio-Behavioral Phenomena
EAGER/协作研究:加速基于代理的模拟创新:在复杂社会行为现象中的应用
- 批准号:
1002517 - 财政年份:2010
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Stochastic Prediction for the Design and Management of Interacting Complex Systems
交互复杂系统设计和管理的随机预测
- 批准号:
1025043 - 财政年份:2010
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Collaborative Research: Uncertainty quantification for petascale simulation of carbon sequestration through fast ultra-scalable stochastic finite element methods.
合作研究:通过快速超可扩展随机有限元方法对千万亿级碳封存模拟进行不确定性量化。
- 批准号:
0904754 - 财政年份:2009
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Opportunities and Challenges in Uncertainty Quantification for Complex Interacting Systems
复杂相互作用系统不确定性量化的机遇和挑战
- 批准号:
0849537 - 财政年份:2008
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Computational System for Probability Based Multi-Scale Model of Ductile Fracture in Heterogeneous Metals and Alloys
合作研究:异种金属和合金中基于概率的延性断裂多尺度模型集成计算系统
- 批准号:
0728304 - 财政年份:2007
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
AMC-SS: Computational Algorithms and Reduced Models for Stochastic PDEs
AMC-SS:随机偏微分方程的计算算法和简化模型
- 批准号:
0512231 - 财政年份:2005
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Workshop on Uncertainty Quantification and Error Estimation
不确定性量化与误差估计研讨会
- 批准号:
0351706 - 财政年份:2003
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Decision Support for Flow in Porous Media: Optimal Sampling for Data Assimilation
多孔介质流动的决策支持:数据同化的最佳采样
- 批准号:
9870005 - 财政年份:1998
- 资助金额:
$ 2.49万 - 项目类别:
Continuing Grant
相似国自然基金
多尺度随机动力系统的渐近行为
- 批准号:12301223
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腐蚀-地震时空作用下长输天然气管道多尺度随机振动及性态演化研究
- 批准号:52304258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于隐式几何描述的梯度随机点阵结构多尺度建模与优化设计
- 批准号:12372200
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于随机等效骨料场的轻骨料混凝土受弯构件性能多尺度分析
- 批准号:52378122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
半随机多尺度传染病传播动力学模型与算法实现研究
- 批准号:12361100
- 批准年份:2023
- 资助金额:27.00 万元
- 项目类别:地区科学基金项目
相似海外基金
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
- 批准号:
2338221 - 财政年份:2024
- 资助金额:
$ 2.49万 - 项目类别:
Continuing Grant
Performance design based on stochastic process simulation of multiscale internal structure in concrete
基于混凝土多尺度内部结构随机过程模拟的性能设计
- 批准号:
21K04211 - 财政年份:2021
- 资助金额:
$ 2.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diversity and Universality of Multiscale Earthquake Processes and Stochastic Modeling
多尺度地震过程的多样性和普遍性与随机模拟
- 批准号:
20K14576 - 财政年份:2020
- 资助金额:
$ 2.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multiscale Analysis of Infinite-Dimensional Stochastic Systems
无限维随机系统的多尺度分析
- 批准号:
1954299 - 财政年份:2020
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Asymptotic analysis of multiscale Lévy-driven stochastic Cucker-Smale and non-linear friction models
多尺度 Lévy 驱动的随机 Cucker-Smale 和非线性摩擦模型的渐近分析
- 批准号:
418509727 - 财政年份:2018
- 资助金额:
$ 2.49万 - 项目类别:
Research Grants