AF:Small:Coarse-Grained Algorithms for Soft Matter
AF:Small:软物质的粗粒度算法
基本信息
- 批准号:0915718
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Number: 0915718Title: AF:Small:Coarse-Grained Algorithms for Soft MatterPrincipal Investigator: N. R. Aluru Institution: University of Illinois at Urbana-ChampaignAbstractSoft matter (e.g. liquids, polymers, biopolymers, etc.) plays an important role in many emerging technologies in engineering and science. The physics of soft matter at macroscopic scales has been investigated for many decades. There is now a good understanding of how to manipulate soft matter at macroscopic scales. The physics of soft matter in confined environments (referring to the behavior of soft matter in constrained spaces) can be quite different from its macroscopic counterpart and many fundamental issues still remain. Soft matter in confined environments can find applications in important technological areas such as energy, health, sensing, sequencing, separation, etc. As a result, soft matter in confined environments has now gained significant interest from the scientific community. Various computational techniques can be used to understand physical, chemical and biological properties of soft matter. However, many of the existing techniques are either too expensive or not accurate enough to perform detailed studies. The objective of this research is to develop advanced computational algorithms to enable a detailed understanding of soft matter in confined environments. Even though quantum-mechanical and atomistic molecular dynamics simulations can be used to understand soft matter in confined spaces, they are limited to small length and short time scales. Mesoscopic methods, such as Brownian dynamics, Monte Carlo, lattice Boltzmann, dissipative particle dynamics, etc., can be used to overcome the limitations of quantum and atomistic molecular dynamics simulations, but, structural accuracy is a key issue in these methods. The objective of this research is to develop novel coarse-grained algorithms where inter-atomic potentials, widely used in atomistic simulation of soft matter, are directly incorporated into advanced physical theories. The inter-atomic potentials will be coarse-grained to ensure structural consistency. The inter-atomic potential based coarse-grained algorithms will be applied for several challenging examples of soft matter. The accuracy of the structural prediction from coarse-grained algorithms will be compared with that from atomistic simulations. It is anticipated that inter-atomic potential based coarse-grained algorithms will be many orders of magnitude faster than purely atomistic simulations and the development of such algorithms will not only elucidate the fundamental aspects of soft matter in confined spaces, but will also lead to rapid computational prototyping of various applications of soft matter.The proposed research is at the cross-roads of several engineering and science disciplines. As a result, the development of inter-atomic potential based coarse-grained algorithms for soft matter will impact several disciplines and application areas. Some of the application areas that could benefit from this fundamental research are energy, sensing, health, sequencing, separation, etc. The main efforts of this project will result in the education of students and postdoctoral associates in the highly interdisciplinary area of soft matter. The research results from this project will be broadly disseminated via journal and conference publications, presentations at meetings and workshops, software, courses taught by the PI in the Department of Mechanical Science and Engineering and summer schools offered at University of Illinois.
提案编号:0915718TITLE:AF:小:软化物质原理研究者的粗粒算法:N。R. Aluru Institation:Urbana-Champaignabstractsoft Matter(例如液体,聚合物,生物聚合物等)在许多Emerging技术中扮演重要角色。数十年来研究了宏观尺度的软物质物理学。现在,人们对如何在宏观尺度上操纵软物质有很好的了解。在受限环境中软物质的物理学(指约束空间中软物质的行为)可能与其宏观对应物完全不同,并且仍然存在许多基本问题。在狭窄的环境中,软物质可以在重要技术领域(例如能源,健康,传感,测序,分离等)中找到应用。因此,在受限环境中的软物质现已引起了科学界的重大兴趣。各种计算技术可用于了解软物质的物理,化学和生物学特性。但是,许多现有技术要么太贵了,要么不够准确,无法进行详细的研究。这项研究的目的是开发先进的计算算法,以在受限环境中详细了解软物质。即使可以使用量子力学和原子分子动力学模拟来理解密闭空间中的软物质,但它们的长度且时间很小,时间尺度很短。可以使用介观方法,例如布朗动力学,蒙特卡洛,晶格鲍尔茨曼,耗散粒子动力学等,以克服量子和原子分子动力学模拟的局限性,但是结构性准确性是这些方法中的关键问题。这项研究的目的是开发新颖的粗粒算法,在这些算法中,在软物质原子模拟中广泛使用的原子间电位直接纳入了先进的物理理论中。原子间电位将是粗粒,以确保结构一致性。基于原子间潜在的粗粒算法将用于几个具有挑战性的软物质实例。将粗粒算法的结构预测的准确性与原子模拟相比。可以预见的是,基于原子的粗粒算法将比纯粹的原子模拟快很多级数量级,并且这种算法的发展不仅会阐明限制空间中软物质的基本方面,而且还将导致拟议的多个工程学的跨越多个工程和多个工程学的计算。结果,针对软物质的基于原子间潜在的粗粒算法的发展将影响几个学科和应用领域。这项基本研究可能受益的某些应用领域是能量,感应,健康,测序,分离等。该项目的主要工作将导致在高度跨学科的软件跨学科领域的学生和博士后同伴的教育。该项目的研究结果将通过期刊和会议出版物,会议和研讨会上的演讲,软件,机械科学与工程系教授的课程以及伊利诺伊大学提供的暑期学校的介绍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Narayana Aluru其他文献
Combining Physics-Based and Evolution-Based Methods to Design Antibodies Against an Evolving Virus
- DOI:
10.1016/j.bpj.2019.11.2669 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Eric Jakobsson;Amir Barati Farimani;Emad Tajkhorshid;Narayana Aluru - 通讯作者:
Narayana Aluru
A Stacked Graphene-Al2O3 Nanopore Architecture for DNA Detection
- DOI:
10.1016/j.bpj.2011.11.3959 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Shouvik Banerjee;B. Murali Venkatesan;David Estrada;Xiaozhong Jin;Vincent Dorgan;Vita Solovyeva;Myung-Ho Bae;Narayana Aluru;Eric Pop;Rashid Bashir - 通讯作者:
Rashid Bashir
Narayana Aluru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Narayana Aluru', 18)}}的其他基金
Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach
合作研究:美国-爱尔兰 R
- 批准号:
2137157 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Electrically-Tunable Surface Energy and Reactivity of Graphene
石墨烯的电可调表面能和反应性
- 批准号:
1708852 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Intrinsic and Extrinsic Losses in Nanoelectromechanical Systems
纳米机电系统的内在和外在损耗
- 批准号:
1506619 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
PIRE: Integrated Computational Materials Engineering for Active Materials and Interfaces in Chemical Fuel Production
PIRE:化学燃料生产中活性材料和界面的集成计算材料工程
- 批准号:
1545907 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
AF: Small: Density Estimation and Uncertainty Propagation in Complex Systems
AF:小:复杂系统中的密度估计和不确定性传播
- 批准号:
1420882 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Structure, Dynamics and Transport of Multiphase Fluids
多相流体的结构、动力学和输运
- 批准号:
1264282 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
QMHP: Multiscale Analysis of Coupled Electrical, Mechanical Systems at Nanoscale
QMHP:纳米级耦合电气、机械系统的多尺度分析
- 批准号:
1127480 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Transport and Interfacial Phenomena in Boron Nitride Nanotubes
氮化硼纳米管中的传输和界面现象
- 批准号:
0852657 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
- 批准号:32370966
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Bioinspired Green Glycolipids as Fugitive Dust Mitigation Agents
仿生绿色糖脂作为扬尘减排剂
- 批准号:
10484307 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Environmental Factors Predicting Risk of Severe COVID Infection
预测严重新冠病毒感染风险的环境因素
- 批准号:
10488177 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Environmental Factors Predicting Risk of Severe COVID Infection
预测严重新冠病毒感染风险的环境因素
- 批准号:
10208054 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别: