Electrically-Tunable Surface Energy and Reactivity of Graphene

石墨烯的电可调表面能和反应性

基本信息

  • 批准号:
    1708852
  • 负责人:
  • 金额:
    $ 37.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical Description: Typically the surface characteristics of conventional materials cannot be changed without disturbing materials' intrinsic properties. For example, chemical treatments are used to alter the surface characteristics of semiconductors, and a continuous flow of electrical currents is used to change the surface characteristics of metals. In contrast, the surface characteristics of graphene, a material which consists of a single atomic layer of hexagonally bonded carbon atoms, can be dynamically tuned while preserving the superb properties of graphene. This is due to the atomically-thin nature and unique properties of graphene. This project studies tunable surface characteristics of graphene to enable a novel and multi-functional coating material. The capacity to dynamically tune the surface characteristics of graphene can be used to advance corrosion and oxidation resistant coating, sensing, condensation heat transfer, battery and supercapacitator efficiency, and microfluidics. These improvements increase productivity and reduce costs in the energy, manufacturing, and health sectors. In addition, the new knowledge and broader implications realized in this project offer an excellent educational opportunity to enhance community engagement and outreach in the exciting and growing field of nanotechnology. Specific avenues for dissemination include online learning platforms, summer research experiences for students, and field trips and summer science camps for high-school students.Technical Description: Graphene, which consists of fully saturated and chemically inert sp2-hybridized carbon atoms, senses and interacts with external molecules in close vicinity via delocalized pi electrons. Unlike conventional bulk materials, external molecules can modulate the doping levels of graphene by interacting with these delocalized, massless Dirac fermions. Likewise, the modulation of doping levels can in turn affect the way graphene reacts with external molecules. The objective of this project is to establish a fundamental understanding of electrical doping-induced tunable surface energy and reactivity of graphene to address the knowledge gap concerning the coupling between graphene's electronic states and its surface energy/reactivity. The principal investigators' hypothesis is that the modulation of graphene's electron state by doping contributes to the tunable electrostatic force which graphene exerts on external molecules, and in turn impacts the tunable surface energy and reactivity of graphene. The research combines in situ experimental investigations with quantum and atomistic theoretical modeling. In situ microscopy, such as atomic force microscopy and electron microscopy, as well as spectroscopic characterizations, including Raman spectroscopy and X-ray photoelectron spectroscopy, are performed to experimentally investigate how doping influences the surface energy and reactivity of graphene. Furthermore, theoretical investigations, including detailed quantum, atomistic and reactive molecular dynamics calculations, are performed to complement and explain experimental finding of doping-induced surface energy/reactivity, while the experimentally obtained parameters are used to develop a comprehensive theory for the prediction and development of new surface phenomena. This project advances the scientific knowledge of how modulation of doping levels affect graphene's reaction to external molecules as well as improves the technical capability of tunable surface characteristics of graphene.
非技术描述:通常,如果不干扰材料的内在特性,则无法更改常规材料的表面特征。例如,化学处理用于改变半导体的表面特征,并使用电流的连续流动来改变金属的表面特性。相比之下,石墨烯的表面特征是由单个原子层组成的六角粘合碳原子的材料,可以在保留石墨烯的出色特性的同时动态调整。这是由于石墨烯的原子稀薄性质和独特的特性所致。该项目研究石墨烯的可调表面特征,以实现一种新颖的多功能涂料材料。动态调整石墨烯的表面特征的能力可用于推进耐腐蚀和抗氧化涂层,感应,冷凝传热,电池和超电容器效率以及微流体。这些改进提高了生产率并降低能源,制造业和健康部门的成本。此外,该项目中实现的新知识和更广泛的含义为纳米技术令人兴奋和不断增长的领域增强了社区参与和推广提供了绝佳的教育机会。传播的特定途径包括在线学习平台,学生的夏季研究经验以及高中生的实地考察和夏季科学训练营。技术描述:石墨烯由完全饱和和化学惰性的SP2杂交碳原子,感官,感官和与外部分子相互作用,通过离层化pi pi pi Electrons的外部分子相互作用。与常规的散装材料不同,外部分子可以通过与这些离域无质量的泥土费物相互作用来调节石墨烯的掺杂水平。同样,掺杂水平的调节反过来会影响石墨烯与外部分子反应的方式。该项目的目的是建立对电掺杂诱导的可调表面能和石墨烯反应性的基本理解,以解决有关石墨烯电子状态与其表面能/反应性之间耦合的知识差距。主要研究者的假设是,通过掺杂对石墨烯电子状态的调节有助于将石墨烯施加在外部分子上的可调静电力,进而影响石墨烯的可调表面能和反应性。该研究将原位实验研究与量子和原子理论建模相结合。进行原位显微镜,例如原子力显微镜和电子显微镜,以及包括拉曼光谱和X射线光电光谱在内的光谱特征,以实验研究如何影响兴奋剂的兴奋剂如何影响石墨烯的表面能量和反应性。此外,还进行了理论研究,包括详细量子,原子和反应性分子动力学计算,以补充并解释掺杂诱导的表面能量/反应性的实验发现,而实验获得的参数则用于为新表面现象的预测和发展提供全面的理论。该项目提高了有关掺杂水平的调节如何影响石墨烯对外部分子的反应的科学知识,并提高了石墨烯可调表面特征的技术能力。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Current understanding and emerging applications of 3D crumpling mediated 2D material-liquid interactions
  • DOI:
    10.1016/j.cossms.2020.100836
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    11
  • 作者:
    P. Snapp;M. Heiranian;M. T. Hwang;R. Bashir;N. Aluru;Sungwoo Nam
  • 通讯作者:
    P. Snapp;M. Heiranian;M. T. Hwang;R. Bashir;N. Aluru;Sungwoo Nam
Uniaxially crumpled graphene as a platform for guided myotube formation
  • DOI:
    10.1038/s41378-019-0098-6
  • 发表时间:
    2019-11-04
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Kim, Junghoon;Leem, Juyoung;Nam, SungWoo
  • 通讯作者:
    Nam, SungWoo
Interaction of 2D materials with liquids: wettability, electrochemical properties, friction, and emerging directions
  • DOI:
    10.1038/s41427-020-0203-1
  • 发表时间:
    2020-03-13
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Snapp, Peter;Kim, Jin Myung;Nam, SungWoo
  • 通讯作者:
    Nam, SungWoo
Colloidal Photonic Crystal Strain Sensor Integrated with Deformable Graphene Phototransducer
  • DOI:
    10.1002/adfm.201902216
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Snapp, Peter;Kang, Pilgyu;Nam, SungWoo
  • 通讯作者:
    Nam, SungWoo
Heterogeneous deformation of two-dimensional materials for emerging functionalities
  • DOI:
    10.1557/jmr.2020.34
  • 发表时间:
    2020-06-15
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Kim, Jin Myung;Cho, Chullhee;Nam, SungWoo
  • 通讯作者:
    Nam, SungWoo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Narayana Aluru其他文献

Combining Physics-Based and Evolution-Based Methods to Design Antibodies Against an Evolving Virus
  • DOI:
    10.1016/j.bpj.2019.11.2669
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Eric Jakobsson;Amir Barati Farimani;Emad Tajkhorshid;Narayana Aluru
  • 通讯作者:
    Narayana Aluru
A Stacked Graphene-Al2O3 Nanopore Architecture for DNA Detection
  • DOI:
    10.1016/j.bpj.2011.11.3959
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Shouvik Banerjee;B. Murali Venkatesan;David Estrada;Xiaozhong Jin;Vincent Dorgan;Vita Solovyeva;Myung-Ho Bae;Narayana Aluru;Eric Pop;Rashid Bashir
  • 通讯作者:
    Rashid Bashir

Narayana Aluru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Narayana Aluru', 18)}}的其他基金

Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach
合作研究:美国-爱尔兰 R
  • 批准号:
    2137157
  • 财政年份:
    2022
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Standard Grant
Stimuli-Responsive Soft Materials
刺激响应软材料
  • 批准号:
    2140225
  • 财政年份:
    2021
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Standard Grant
Stimuli-Responsive Soft Materials
刺激响应软材料
  • 批准号:
    1921578
  • 财政年份:
    2020
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Standard Grant
Intrinsic and Extrinsic Losses in Nanoelectromechanical Systems
纳米机电系统的内在和外在损耗
  • 批准号:
    1506619
  • 财政年份:
    2015
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Standard Grant
PIRE: Integrated Computational Materials Engineering for Active Materials and Interfaces in Chemical Fuel Production
PIRE:化学燃料生产中活性材料和界面的集成计算材料工程
  • 批准号:
    1545907
  • 财政年份:
    2015
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Continuing Grant
AF: Small: Density Estimation and Uncertainty Propagation in Complex Systems
AF:小:复杂系统中的密度估计和不确定性传播
  • 批准号:
    1420882
  • 财政年份:
    2014
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Standard Grant
Structure, Dynamics and Transport of Multiphase Fluids
多相流体的结构、动力学和输运
  • 批准号:
    1264282
  • 财政年份:
    2013
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Standard Grant
QMHP: Multiscale Analysis of Coupled Electrical, Mechanical Systems at Nanoscale
QMHP:纳米级耦合电气、机械系统的多尺度分析
  • 批准号:
    1127480
  • 财政年份:
    2011
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Continuing Grant
Transport and Interfacial Phenomena in Boron Nitride Nanotubes
氮化硼纳米管中的传输和界面现象
  • 批准号:
    0852657
  • 财政年份:
    2009
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Standard Grant
AF:Small:Coarse-Grained Algorithms for Soft Matter
AF:Small:软物质的粗粒度算法
  • 批准号:
    0915718
  • 财政年份:
    2009
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Standard Grant

相似国自然基金

基于qBIC-惠更斯共振的动量域光场动态可调谐超表面机理与器件研究
  • 批准号:
    62305372
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于过渡金属硫化物薄膜复合介质超表面的高性能可调控太赫兹辐射源研究
  • 批准号:
    62365006
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
木质基多色可调磷光碳点的微波溶剂热制备、表面调控及发光机制
  • 批准号:
    32371817
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
电光可调高Q铌酸锂超表面研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
电光可调高Q铌酸锂超表面研究
  • 批准号:
    12274462
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目

相似海外基金

Cloaking Anisotropic Capillary Interactions Through Tunable Nanoscale Surface Topography
通过可调纳米级表面形貌隐藏各向异性毛细管相互作用
  • 批准号:
    2232579
  • 财政年份:
    2023
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Surface Morphological Effect on Biomolecular Attachment to Responsive Microgels for Tunable Biomimetic 3D-Cell Culture Scaffolds
LEAPS-MPS:表面形态对可调仿生 3D 细胞培养支架的响应性微凝胶生物分子附着的影响
  • 批准号:
    2137578
  • 财政年份:
    2022
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Standard Grant
Engineering Spatiotemporal Osteochondral Tissue Formation with Tunable 3D-Printed Scaffolds
使用可调谐 3D 打印支架工程设计时空骨软骨组织形成
  • 批准号:
    10373762
  • 财政年份:
    2022
  • 资助金额:
    $ 37.68万
  • 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
  • 批准号:
    10522260
  • 财政年份:
    2022
  • 资助金额:
    $ 37.68万
  • 项目类别:
Engineering Spatiotemporal Osteochondral Tissue Formation with Tunable 3D-Printed Scaffolds
使用可调谐 3D 打印支架工程设计时空骨软骨组织形成
  • 批准号:
    10629168
  • 财政年份:
    2022
  • 资助金额:
    $ 37.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了