PIRE: Integrated Computational Materials Engineering for Active Materials and Interfaces in Chemical Fuel Production

PIRE:化学燃料生产中活性材料和界面的集成计算材料工程

基本信息

  • 批准号:
    1545907
  • 负责人:
  • 金额:
    $ 427.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

A major challenge before renewable energy technologies can be implemented at global scales is to find a way to store the energy produced by intermittent sources such as the wind and the sun. Existing technologies fail to meet the energy storage demand and novel solutions are needed. An attractive technology that can potentially meet the growing demand is solid oxide electrolysis, where electrical energy produced by renewables is converted into chemical energy and stored for later use. Solid oxide electrolysis cells (SOECs) are complex, integrated material systems that use electrical energy as input to catalyze chemical reactions that produce chemical fuels. However, at present SOECs last for only a few hundreds of hours primarily because of degradation and failure at interfaces and in the bulk. In this project, an international partnership, comprising the University of Illinois at Urbana-Champaign, University of California at Berkeley, and Northwestern University in the U.S. and Kyushu University in Japan, has been formed to demonstrate an integrated approach to enabling SOEC technology. This PIRE award uniquely combines the world-class experimental resources and expertise at KU with the complimentary experimental expertise at UCB and NU, and the world-class computational facilities and expertise at Illinois to solve the energy storage grand challenge. This project will have a lasting institutional impact, including long-term synergistic collaborations between U.S. and Japan; extensive research and training for students and early career investigators in cutting-edge interdisciplinary topics in an international collaborative context, and outreach to K-12 teachers, science museums and summer camps. The integrated PIRE project will advance research in a number of disciplinary areas, including materials, physics, chemistry, engineering and computational science, and create a global citizenry to power the future. This project will develop an integrated computational and experimental approach to design efficient, reliable, low temperature, extended lifetime SOECs. The novel aspects of the proposal are: 1) Computational and experimental design of novel proton and oxygen-ion conducting electrolytes. This effort will involve the design and development of proton conducting oxides with sufficient stability, operating temperature of 600?aC or lower, higher energy efficiencies at acceptable current density and high proton conductivity. 2) Computational and experimental design of novel electrodes focusing on chemistry and microstructure. This effort will involve the design and development of high-activity electrodes based on microstructure optimization and materials activity. In addition, a detailed understanding of new electrodes such as the Ruddlesden-Popper structures and ordered perovskites will be developed. 3) Computational models and experimental validation of degradation modes in SOECs. This will involve the development of a comprehensive understanding of degradation modes at electrolyte/electrode interfaces focusing on relationships between temperature and applied potential to cation segregation, bubble formation, delamination and fracture. The computational effort is strongly tied with the experimental effort and all computational predictions will be validated with experiments. Undergraduate, graduate and postdoctoral researchers will be engaged in a rich US-Japan exchange program and their PIRE research and education experience will prepare them for challenging positions in the global workplace. Outreach activities will focus on K-12 engagement, teacher training, disseminating knowledge via science museums, and summer camps.This award is cofunded by the Division of Advanced Cyberinfrastructure, Directorate for Computer and Information Science and Engineering.
可再生能源技术在全球范围内实施之前的一个主要挑战是找到一种方法来存储风能和太阳能等间歇性能源产生的能源。现有技术无法满足储能需求,需要新颖的解决方案。固体氧化物电解是一项颇具吸引力的技术,可以满足不断增长的需求,其中可再生能源产生的电能被转化为化学能并储存起来供以后使用。固体氧化物电解池 (SOEC) 是复杂的集成材料系统,它使用电能作为输入来催化化学反应,从而产生化学燃料。然而,目前 SOEC 只能持续几百小时,主要是因为界面和整体的退化和故障。在该项目中,由伊利诺伊大学厄巴纳-香槟分校、加州大学伯克利分校、美国西北大学和日本九州大学组成的国际合作伙伴关系已经建立,以展示实现 SOEC 技术的综合方法。该 PIRE 奖项独特地将 KU 的世界一流的实验资源和专业知识与 UCB 和 NU 的免费实验专业知识以及伊利诺伊州的世界一流的计算设施和专业知识相结合,以解决能源存储的重大挑战。该项目将产生持久的机构影响,包括美国和日本之间的长期协同合作;在国际合作的背景下,为学生和早期职业调查人员提供前沿跨学科主题的广泛研究和培训,并向 K-12 教师、科学博物馆和夏令营进行推广。综合 PIRE 项目将推进材料、物理、化学、工程和计算科学等多个学科领域的研究,并培养为未来提供动力的全球公民。该项目将开发一种集成的计算和实验方法来设计高效、可靠、低温、延长寿命的 SOEC。该提案的新颖之处在于:1)新型质子和氧离子导电电解质的计算和实验设计。这项工作将涉及设计和开发质子传导氧化物,该氧化物具有足够的稳定性、600℃或更低的工作温度、在可接受的电流密度和高质子传导性下具有更高的能量效率。 2)新型电极的计算和实验设计,重点关注化学和微观结构。这项工作将涉及基于微观结构优化和材料活性的高活性电极的设计和开发。此外,还将详细了解新电极,例如 Ruddlesden-Popper 结构和有序钙钛矿。 3) SOEC 降解模式的计算模型和实验验证。这将涉及对电解质/电极界面降解模式的全面理解,重点关注温度和施加的电位与阳离子分离、气泡形成、分层和断裂之间的关系。计算工作与实验工作密切相关,所有计算预测都将通过实验进行验证。本科生、研究生和博士后研究人员将参与丰富的美日交流计划,他们的 PIRE 研究和教育经验将为他们在全球工作场所中担任具有挑战性的职位做好准备。外展活动将侧重于 K-12 参与、教师培训、通过科学博物馆传播知识和夏令营。该奖项由计算机和信息科学与工程理事会高级网络基础设施部门共同资助。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability conditions and local minima in multicomponent Hartree-Fock and density functional theory
多组分 Hartree-Fock 和密度泛函理论中的稳定性条件和局部最小值
  • DOI:
    10.1063/1.5040353
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang, Yang;Culpitt, Tanner;Tao, Zhen;Hammes-Schiffer, Sharon
  • 通讯作者:
    Hammes-Schiffer, Sharon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Narayana Aluru其他文献

Narayana Aluru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Narayana Aluru', 18)}}的其他基金

Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach
合作研究:美国-爱尔兰 R
  • 批准号:
    2137157
  • 财政年份:
    2022
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Stimuli-Responsive Soft Materials
刺激响应软材料
  • 批准号:
    2140225
  • 财政年份:
    2021
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Stimuli-Responsive Soft Materials
刺激响应软材料
  • 批准号:
    1921578
  • 财政年份:
    2020
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Electrically-Tunable Surface Energy and Reactivity of Graphene
石墨烯的电可调表面能和反应性
  • 批准号:
    1708852
  • 财政年份:
    2017
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Intrinsic and Extrinsic Losses in Nanoelectromechanical Systems
纳米机电系统的内在和外在损耗
  • 批准号:
    1506619
  • 财政年份:
    2015
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
AF: Small: Density Estimation and Uncertainty Propagation in Complex Systems
AF:小:复杂系统中的密度估计和不确定性传播
  • 批准号:
    1420882
  • 财政年份:
    2014
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Structure, Dynamics and Transport of Multiphase Fluids
多相流体的结构、动力学和输运
  • 批准号:
    1264282
  • 财政年份:
    2013
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
QMHP: Multiscale Analysis of Coupled Electrical, Mechanical Systems at Nanoscale
QMHP:纳米级耦合电气、机械系统的多尺度分析
  • 批准号:
    1127480
  • 财政年份:
    2011
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Continuing Grant
Transport and Interfacial Phenomena in Boron Nitride Nanotubes
氮化硼纳米管中的传输和界面现象
  • 批准号:
    0852657
  • 财政年份:
    2009
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
AF:Small:Coarse-Grained Algorithms for Soft Matter
AF:Small:软物质的粗粒度算法
  • 批准号:
    0915718
  • 财政年份:
    2009
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant

相似国自然基金

视觉与语义融合的场景文字检测与识别技术研究
  • 批准号:
    62376266
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
  • 批准号:
    62373344
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
融合多源多态误差传递的复杂装备公差均衡创成机理
  • 批准号:
    52305285
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
虚实融合共生迭代驱动的离心叶轮健康状态与性能退化评估方法研究
  • 批准号:
    52305108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代理模型融合与迁移的分布式数据驱动进化计算方法
  • 批准号:
    62376097
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
  • 批准号:
    2400087
  • 财政年份:
    2024
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 427.38万
  • 项目类别:
    EU-Funded
Core D: Integrated Computational Analysis Core
核心D:综合计算分析核心
  • 批准号:
    10555896
  • 财政年份:
    2023
  • 资助金额:
    $ 427.38万
  • 项目类别:
Computational Strategies to Tailor Existing Interventions for First Major Depressive Episodes to Inform and Test Personalized Interventions
针对首次严重抑郁发作定制现有干预措施的计算策略,以告知和测试个性化干预措施
  • 批准号:
    10650695
  • 财政年份:
    2023
  • 资助金额:
    $ 427.38万
  • 项目类别:
Investigating Early Elementary Students' Computational Thinking Development in Integrated Mathematics-Coding Instruction
综合数学编码教学中小学生计算思维发展的调查
  • 批准号:
    2300357
  • 财政年份:
    2023
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了