FRG: Collaborative Research: Arithmetic and equidistribution on homogeneous spaces

FRG:协作研究:齐次空间上的算术和等分布

基本信息

  • 批准号:
    0903110
  • 负责人:
  • 金额:
    $ 8.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

In recent years, it has become clear that many interesting problems, in particular problems in arithmetic, quantum chaos and the theory of L-functions, may be profitably reduced to questions concerning equidistribution of points or measures on homogeneous spaces. These questions regarding equidistribution can be approached from many angles. Two theories which have proved to be particularly well-suited to study such questions are the spectral theory of automorphic forms, which is closely related to the theory of L-functions, and the theory of dynamical systems, particularly the study of unipotent and more general flows on these homogeneous spaces. Recently there has been considerable progress involving tools such as special value formulae for L-functions, and (partial) classification results for measures invariant under higher rank torus actions. Particularly exciting is the possibility, already realized in some instances, of combining these techniques. The purpose of the proposed FRG is to investigate further this circle of ideas, which we believe has the potential to impact many other problems related to the above. The result of these investigations will be a deeper understanding of the dynamics of group actions on homogeneous spaces, of the analytic theory of automorphic forms, and the (sometimes unexpected) applications to problems ofarithmetic nature.The present project is concerned with a surprising link between two classical fields of mathematics of quite disparate origin: number theory and dynamics. The study of number theory began thousands of years ago, motivated, in significant part, by questions about prime numbers. On the other hand, ergodic theory and dynamics are mathematical fields of more recent provenance, which arose from studying the long-term evolution of complicated deterministic processes -- such as planetary motion. It is a striking fact (which has only recently begun to be heavily exploited) that, in certain contexts, ideas from ergodic theory interact very deeply with classical problems in number theory. This project will enhance our understanding of this inter-relation and how we can combine knowledge from both of these fruitful disciplines effectively.
近年来,人们已经清楚地认识到,许多有趣的问题,特别是算术、量子混沌和 L 函数理论中的问题,可以有效地简化为有关均匀空间上的点或测度的均匀分布的问题。这些有关均等分配的问题可以从多个角度来探讨。已被证明特别适合研究此类问题的两种理论是自守形式的谱理论,它与 L 函数理论密切相关,以及动力系统理论,特别是单能和更一般的研究在这些同质空间上流动。最近,在一些工具方面取得了相当大的进展,例如 L 函数的特殊值公式,以及高阶环面动作下不变的测度的(部分)分类结果。特别令人兴奋的是结合这些技术的可能性,在某些情况下已经实现。拟议的 FRG 的目的是进一步研究这一思想圈,我们认为这有可能影响与上述相关的许多其他问题。这些研究的结果将是对同质空间上的群体行为的动力学、自守形式的分析理论以及在算术性质问题上的(有时是意想不到的)应用有更深入的理解。本项目关注的是两个起源截然不同的经典数学领域:数论和动力学。数论的研究始于数千年前,很大程度上是受到有关素数的问题的推动。 另一方面,遍历理论和动力学是最近起源的数学领域,它们产生于研究复杂的确定性过程(例如行星运动)的长期演化。一个引人注目的事实(直到最近才开始被大量利用)是,在某些情况下,遍历理论的思想与数论中的经典问题相互作用非常深刻。 该项目将增强我们对这种相互关系的理解,以及我们如何有效地结合这两个富有成果的学科的知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Akshay Venkatesh其他文献

Automorphic cohomology, motivic cohomology, and the adjoint $L$-function
自守上同调、动机上同调和伴随 $L$ 函数
  • DOI:
  • 发表时间:
    2016-09-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kartik Prasanna;Akshay Venkatesh
  • 通讯作者:
    Akshay Venkatesh
Modeling λ‐invariants by p‐adic random matrices
通过 padic 随机矩阵对 δ 不变量进行建模
Beyond Endoscopy and special forms on GL(2)
超越内窥镜检查和 GL(2) 上的特殊表格
  • DOI:
    10.1515/crll.2004.2004.577.23
  • 发表时间:
    2004-01-30
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Akshay Venkatesh
  • 通讯作者:
    Akshay Venkatesh
SPECTRAL THEORY OF AUTOMORPHIC FORMS: A VERY BRIEF INTRODUCTION
自同构形式的谱论:非常简短的介绍
  • DOI:
    10.1007/978-1-4020-5404-4_12
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akshay Venkatesh
  • 通讯作者:
    Akshay Venkatesh
Equidistribution, L-functions and ergodic theory: on some problems of Yu. Linnik
等分配、L-函数和遍历理论:关于Yu的一些问题。
  • DOI:
    10.4171/022-2/19
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Michel;Akshay Venkatesh
  • 通讯作者:
    Akshay Venkatesh

Akshay Venkatesh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Akshay Venkatesh', 18)}}的其他基金

Conference: Visions in Arithmetic and Beyond
会议:算术及其他领域的愿景
  • 批准号:
    2402436
  • 财政年份:
    2024
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Standard Grant
Research in Mathematics
数学研究
  • 批准号:
    1926686
  • 财政年份:
    2020
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mathematical Sciences Institutes Diversity Initiative
合作研究:数学科学研究所多样性倡议
  • 批准号:
    1936539
  • 财政年份:
    2019
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Standard Grant
Cohomological periods and high rank lattices
上同调周期和高阶格
  • 批准号:
    1931087
  • 财政年份:
    2019
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Continuing Grant
Cohomological periods and high rank lattices
上同调周期和高阶格
  • 批准号:
    1401622
  • 财政年份:
    2014
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Proposal: Periods of Automorphic Forms and Applications to L-Functions
FRG:协作提案:自同构形式的周期及其在 L 函数中的应用
  • 批准号:
    1065807
  • 财政年份:
    2011
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Continuing Grant
Arthur's Conjecture, Spectural Theory, and Analytic Number Theory in Higher Rank
亚瑟猜想、谱论和高阶解析数论
  • 批准号:
    0813445
  • 财政年份:
    2007
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Arithmetic and equidistribution on homogeneous spaces
FRG:协作研究:齐次空间上的算术和等分布
  • 批准号:
    0554365
  • 财政年份:
    2006
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Standard Grant
Arthur's Conjecture, Spectural Theory, and Analytic Number Theory in Higher Rank
亚瑟猜想、谱论和高阶解析数论
  • 批准号:
    0245606
  • 财政年份:
    2003
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245228
  • 财政年份:
    2023
  • 资助金额:
    $ 8.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了