FRG: Collaborative Research: New birational invariants

FRG:协作研究:新的双有理不变量

基本信息

  • 批准号:
    2244978
  • 负责人:
  • 金额:
    $ 48.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Algebraic varieties are shapes defined by solution sets of systems of polynomial equations. They appear naturally in different fields of science and engineering, including physics, cryptography, control theory, robotics, computer vision, etc,. A fundamental problem in geometry is the classification of algebraic varieties, as it helps us gain a better understanding of the structures and relations between them. The first step in classification is called birational classification, i.e. two algebraic varieties are called birational if they are equal outside some lower-dimensional loci. In this proposal, the PIs will investigate new birational invariants. These invariants will shed new light on the birational classification problem. The Principal Investigators will bring new ideas from differential equations, category theory, mirror symmetry and conformal field theory for achieving this goal. This project will provide research training opportunities for graduate students and early-career researchers.More concretely, the Principal Investigators will develop an extended theory of variations of non-commutative Hodge structures. It will be based on a new singularity theory of Landau-Ginzburg models and a non-commutative refinement of the notion of spectrum of quantum multiplication operators. These new non-commutative spectra will provide natural obstructions to rationality and equivariant rationality of Fano varieties. Additionally the PIs will investigate the connection between non-commutative spectra and R-charges of conformal field theories. This will lead to even stronger birational invariants, as well as to new unexpected bridges between geometry and other branches of mathematics, including: a new connection between Steenbrink spectra and the spectra of conformal weights in vertex operator algebras; a connection between topological invariants of 3-manifolds and non-commutative spectra of complex surfaces; semicontinuity of non-commutative spectra of algebraic varieties and the RG-flows on sigma-models with targets on such varieties; and a relation between the Kaehler-Ricci flow and the RG-flow.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数簇是由多项式方程组的解集定义的形状。它们自然地出现在科学和工程的不同领域,包括物理学、密码学、控制理论、机器人、计算机视觉等。几何中的一个基本问题是代数簇的分类,因为它有助于我们更好地理解它们之间的结构和关系。分类的第一步称为双有理分类,即如果两个代数簇在某些低维轨迹之外相等,则称为双有理。在本提案中,PI 将研究新的双有理不变量。这些不变量将为双理性分类问题提供新的思路。首席研究员将从微分方程、范畴论、镜像对称和共形场论中带来新的想法来实现这一目标。该项目将为研究生和早期职业研究人员提供研究培训机会。更具体地说,主要研究人员将开发非交换霍奇结构变体的扩展理论。它将基于朗道-金兹堡模型的新奇点理论和量子乘法算子谱概念的非交换细化。这些新的非交换谱将为 Fano 簇的理性和等变理性提供天然障碍。此外,PI 还将研究非交换谱与共形场论的 R 电荷之间的联系。这将导致更强的双有理不变量,以及几何学和其他数学分支之间新的意想不到的桥梁,包括:Steenbrink 谱和顶点算子代数中的共形权谱之间的新联系; 3-流形的拓扑不变量与复杂曲面的非交换谱之间的联系;代数簇的非交换谱的半连续性以及以此类簇为目标的 sigma 模型上的 RG 流;该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ron Donagi其他文献

Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties
复曲面簇的切束变形的量子束上同调的物理方面
The Hitchin Image in Type-D
Type-D 中的希钦图像
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Balasubramanian;Jacques Distler;Ron Donagi;Carlos Perez
  • 通讯作者:
    Carlos Perez
Big Schottky
大肖特基
  • DOI:
  • 发表时间:
    1987
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ron Donagi
  • 通讯作者:
    Ron Donagi
The fibers of the Prym map
Prym 地图的纤维
  • DOI:
    10.1090/conm/136/1188194
  • 发表时间:
    1992-06-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ron Donagi
  • 通讯作者:
    Ron Donagi

Ron Donagi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ron Donagi', 18)}}的其他基金

Algebraic Geometry and Strings
代数几何和弦
  • 批准号:
    2401422
  • 财政年份:
    2024
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Continuing Grant
Research in Mathematical Physics and Algebraic Geometry
数学物理与代数几何研究
  • 批准号:
    2001673
  • 财政年份:
    2020
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
  • 批准号:
    1937524
  • 财政年份:
    2019
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Standard Grant
Research at the Interface of Algebraic Geometry and String Theory
代数几何与弦理论的接口研究
  • 批准号:
    1603526
  • 财政年份:
    2016
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Continuing Grant
String Math Conferences 2014, June 9-13, 2014
2014 年弦数学会议,2014 年 6 月 9-13 日
  • 批准号:
    1401390
  • 财政年份:
    2014
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Standard Grant
Algebraic Geometry in String Theory
弦论中的代数几何
  • 批准号:
    1304962
  • 财政年份:
    2013
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Continuing Grant
SM: A Conference Series on Mathematical String Theory
SM:数学弦理论会议系列
  • 批准号:
    0963840
  • 财政年份:
    2010
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Standard Grant
Research Proposal in Algebraic Geometry and String Theory
代数几何和弦理论的研究计划
  • 批准号:
    0908487
  • 财政年份:
    2009
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Standard Grant
Research Project in Algebraic Geometry and String Theory
代数几何和弦理论研究项目
  • 批准号:
    0612992
  • 财政年份:
    2006
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Continuing Grant
FRG: The Geometry of Superstrings
FRG:超弦几何
  • 批准号:
    0139799
  • 财政年份:
    2002
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245228
  • 财政年份:
    2023
  • 资助金额:
    $ 48.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了