Collaborative Research: Very High Heat-flux Cooling through Stable Energy-Efficient Macro-scale Partial Flow-boiling Using Microstructured Surfaces and Ultrasonics

合作研究:利用微结构表面和超声波通过稳定节能的宏观局部流动沸腾实现极高热通量冷却

基本信息

  • 批准号:
    2327965
  • 负责人:
  • 金额:
    $ 34.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The urgent demand for high power-density electronic devices in various industries has created a pressing need for efficient and cost-effective cooling solutions. One promising approach is the utilization of advanced and stable flow-boiling processes, employing environmentally friendly dielectric fluids with low boiling temperatures (40-50 deg C) near atmospheric pressures, and relatively small operating temperature differences between the maximum allowable chip temperatures and the cooling dielectric fluid. This project will demonstrate an efficient cooling strategy by employing highly stable and energy-efficient partial flow-boiling of Novec/3M-engineered fluids at high heat fluxes (50 - 200 W/cm2 or more). The proposed approach will involve fluid-filled microstructured surfaces that undergo special structural and sub-structural micro-nano-scale vibrations, consuming very small amounts of energy. An attractive benefit of this approach is the generation of significantly higher pressure vapor (2-3 times more than other approaches), enabling significant waste heat recovery from cooling heat exchangers: allowing these phenomena, when scaled to large systems (such as data centers), to recover a large portion of the waste heat (e.g., 200 TWh globally from data centers alone) as clean electricity.The proposed research will leverage the stable energy-efficient cooling performance of partial flow-boiling in a millimeter-scale heat sink with a fluid-filled microstructured boiling surface for enhanced nucleate boiling (ENB). This proposal will deliver on achieving significant and sustainable vaporization rates within the heterogeneously nucleated bubbles by leveraging the acoustothermal effects caused by piezo-induced ultra-sonic micro-vibrations of the sub-structures (i.e. of mesh wires at frequency: 1-10 MHz; amplitude: nm/µm range), with superposed amplitude modulations at sonic frequencies ranging from 100 to 10,000 Hz and resulting in µm-scale amplitudes. The sonic frequencies will promote efficient and resonant structural micro-vibrations, alternately enhancing both liquid rewetting and the removal of micro-bubbles from the microstructured boiling region, allowing them to transition into the macro-scale two-phase flow within the heat sink. Hence, ENB will be achieved through the synergistic combination of resonant and energy-efficient structural and sub-structural micro-vibrations. Furthermore, the additional heating induced by this approach will generate high pressures within the vapor that can be harnessed to develop new waste heat recovery technologies. This proposal, therefore, with the potential to develop novel energy-efficient and environment-friendly cooling solutions for high-power density devices as well as strategies for improved waste heat recovery will have significant applications in data centers and the hybrid electric vehicle market. Furthermore, the project will foster university-industry collaborations, facilitate human resources development through student mentoring, and contribute to promoting diversity and inclusiveness within the field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对各个行业中高功率密度电子设备的紧急需求产生了对有效且具有成本效益的冷却解决方案的迫切需求。一种有希望的方法是利用高级和稳定的流动过程,使用大气压靠近沸腾温度(40-50°C)的环保流体,以及最大可允许的芯片温度与冷却介电液体之间的工作温度相对较小。该项目将通过在高热通量(50-200 w/cm2或更多)下采用高度稳定和节能的部分流动液来证明有效的冷却策略。所提出的方法将涉及充满流体的微结构表面,这些表面经历了特殊的结构和属性微纳米尺度振动,消耗了少量的能量。这种方法的一个有吸引力的好处是产生明显更高的压力蒸气(比其他方法高2-3倍),从而使冷却热交换器的大量废物热恢复:当将这些现象缩放到大型系统(例如数据中心)时,将这些现象(例如数据中心)缩放,以恢复大部分的废热(例如,从数据中心效力,供应的数据效率很大)。在毫米级的散热器中流动流动,并带有充满流体的微结构沸腾表面,可增强核沸腾(ENB)。 This proposal will deliver on achieving significant and sustainable dispersion rates within the heterogeneously nuclearized bubbles by leveraging the acoustictothermal effects caused by piezo-induced ultra-sonic micro-vibrations of the sub-structures (i.e. of mesh wires at frequency: 1-10 MHz; amplifier: nm/µm range), with superposed amplifier modulations at sonic frequencies ranging from 100至10,000 Hz,导致µm尺度放大器。声音频率将促进有效且谐振的结构微振动,或者可以增强液体重新润湿和从微结构沸腾区域中去除微泡,从而使它们能够过渡到散热器内的宏观规模的两相流。因此,通过共振和能节能的结构和亚结构微振动的协同组合来实现ENB。此外,这种方法引起的额外加热将在蒸气中产生高压力,以开发新的废热恢复技术。因此,该提案有可能为高功率密度设备开发新颖的节能和环境友好的冷却解决方案,以及改善废物热恢复的策略,将在数据中心和混合电动汽车市场中有重大应用。此外,该项目将促进大学 - 行业的合作,通过学生的心理促进人力资源的发展,并有助于促进该领域的多样性和包容性。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来通过评估来通过评估来获得的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amitabh Narain其他文献

Amitabh Narain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amitabh Narain', 18)}}的其他基金

Fundamental Investigations for Very High Heat-Flux Innovative Operations of Milli-Meter Scale Flow Boilers
毫米级流量锅炉极高热通量创新运行的基础研究
  • 批准号:
    1402702
  • 财政年份:
    2014
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
Flow Prediction and Fluctuation-sensitivity Investigations for Quasi-steady Shear Driven Condensing Flows in Milli-meter to Micro-meter Scale Two-Phase Systems
毫米至微米级两相系统中准稳态剪切驱动冷凝流的流量预测和波动敏感性研究
  • 批准号:
    1033591
  • 财政年份:
    2010
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
Prediction and Attainment Capability for Quasi-Steady Internal Condensing Flows: An Integrated Experimental/Computational Approach
准稳态内部冷凝流的预测和实现能力:综合实验/计算方法
  • 批准号:
    0086988
  • 财政年份:
    2001
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant

相似国自然基金

激励幅度受限的非常规阵列波束综合方法研究
  • 批准号:
    62301414
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
钒基笼目超导体中非常规电荷密度波和超导机理研究
  • 批准号:
    12374137
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
准一维MX3化合物的非常规合成与超导电性研究
  • 批准号:
    12374050
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
非常规晶相合金纳米线的合成调控及电催化应用研究
  • 批准号:
    22371122
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
空间受限的过渡金属氧化物中拓扑磁结构及非常规输运性质的研究
  • 批准号:
    12304153
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Very High Heat-flux Cooling through Stable Energy-Efficient Macro-scale Partial Flow-boiling Using Microstructured Surfaces and Ultrasonics
合作研究:利用微结构表面和超声波通过稳定节能的宏观局部流动沸腾实现极高热通量冷却
  • 批准号:
    2327966
  • 财政年份:
    2023
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
Effects of Genetic ANGPTL3 Deficiency on Hepatic Lipid Regulation and Lipoprotein Production
遗传性 ANGPTL3 缺陷对肝脏脂质调节和脂蛋白产生的影响
  • 批准号:
    10605624
  • 财政年份:
    2023
  • 资助金额:
    $ 34.41万
  • 项目类别:
Disparities in Processes and Outcomes of Care Across Asian/Pacific Islander Populations at Childbirth
亚洲/太平洋岛民分娩护理过程和结果的差异
  • 批准号:
    10455642
  • 财政年份:
    2021
  • 资助金额:
    $ 34.41万
  • 项目类别:
Determinants of Newborn Health and Health Care Trajectories in the First Year of Life
新生儿健康的决定因素和生命第一年的医疗保健轨迹
  • 批准号:
    10428462
  • 财政年份:
    2021
  • 资助金额:
    $ 34.41万
  • 项目类别:
Disparities in Processes and Outcomes of Care Across Asian/Pacific Islander Populations at Childbirth
亚洲/太平洋岛民分娩护理过程和结果的差异
  • 批准号:
    10315907
  • 财政年份:
    2021
  • 资助金额:
    $ 34.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了