AMC-SS: Collaborative Research: Stochastic Processes and Time Series Models: Algorithms, Asymptotics, and Phase Transitions

AMC-SS:协作研究:随机过程和时间序列模型:算法、渐近和相变

基本信息

  • 批准号:
    0902075
  • 负责人:
  • 金额:
    $ 28.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

Model building is often guided by features that enable performance analysis and analytic computations. Examples of such types of convenient features include linearity, Gaussian or light-tailed features. The investigators intend to develop mathematical tools that enable the analysis of stochastic systems that exhibit non-linear, non-Gaussian and potentially heavy-tailed type characteristics. Their goal is not only to provide tools that can be used to identify when Gaussian approximations are appropriate and at which spatial scales large deviations or heavy-tailed asymptotics should be used, but they also aim to develop techniques to improve upon Gaussian and tail asymptotics by means of corrected approximations and sharp large deviation results. These techniques will help researchers identify the spatial and temporal scales under which Gaussian approximations are valid. In addition, the investigators aim to provide tools that allow to understand how such spatial scales transition into a large deviations region which may incorporate heavy-tailed approximations and more refined information. Since the qualitative behavior of a system can change dramatically depending upon various input characteristics (e.g. light vs. heavy-tailed), identifying regions or scales when tractable approximations can be safely used would be of great value. Recent developments in areas such as Communication Networks, Catastrophe Modeling, Insurance and Finance demand more complex time-series models that are either non-linear or exhibit non-Gaussian and/or even heavy-tailed features (such as ARCH and GARCH type processes). For example, portfolios of insurance claims or complex financial securities count their individual risk factors in the order of thousands. The factors can give rise to extremely large losses (heavy-tails) and the dependence structures among such factors, which is crucial in the overall risk profile, is very complex (giving rise to non-Gaussian behavior). As a consequence, the analysis of such complex models is challenging both computationally and analytically and therefore it is necessary to resort to approximations and efficient computational algorithms. The investigators propose the use and development of mathematical techniques to better understand when standard approximations, based on Gaussian laws and linearization, are applicable; when non-linear features must be taken into account and how does one transition from Gaussian-type approximations to a type of analysis that involves large losses or extreme behavior. The outcome of this research will improve the performance analysis of complex stochastic systems in the areas indicated above.
模型构建通常以支持性能分析和分析计算的功能为指导。此类方便特征的示例包括线性、高斯或轻尾特征。研究人员打算开发数学工具,能够分析表现出非线性、非高斯和潜在重尾类型特征的随机系统。他们的目标不仅是提供可用于识别高斯近似何时合适以及应使用大偏差或重尾渐近的空间尺度的工具,而且还旨在开发通过以下方式改进高斯和尾渐近的技术:修正近似值和尖锐的大偏差结果的方法。这些技术将帮助研究人员确定高斯近似有效的空间和时间尺度。此外,研究人员的目标是提供工具,使人们能够了解这种空间尺度如何转变为大偏差区域,该区域可能包含重尾近似和更精细的信息。由于系统的定性行为可能会根据各种输入特征(例如轻尾与重尾)而发生巨大变化,因此在可以安全使用易于处理的近似值时识别区域或尺度将具有很大的价值。 通信网络、灾难建模、保险和金融等领域的最新发展需要更复杂的时间序列模型,这些模型要么是非线性的,要么表现出非高斯和/或什至重尾特征(例如 ARCH 和 GARCH 类型过程) 。例如,保险索赔或复杂金融证券的投资组合将其各自的风险因素计算为数千个。这些因素可能会导致极大的损失(重尾),并且这些因素之间的依赖结构(这对于整体风险状况至关重要)非常复杂(导致非高斯行为)。因此,这种复杂模型的分析在计算和分析上都具有挑战性,因此有必要诉诸近似和高效的计算算法。研究人员建议使用和开发数学技术,以更好地理解基于高斯定律和线性化的标准近似何时适用;何时必须考虑非线性特征,以及如何从高斯型近似过渡到涉及大损失或极端行为的分析类型。这项研究的成果将改善上述领域的复杂随机系统的性能分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Blanchet其他文献

A Model of Bed Demand to Facilitate the Implementation of Data-driven Recommendations for COVID-19 Capacity Management
床位需求模型促进实施数据驱动的 COVID-19 容量管理建议
  • DOI:
    10.21203/rs.3.rs-31953/v1
  • 发表时间:
    2020-06-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Teng Zhang;Kelly A McFarlane;J. Vallon;Linying Yang;Jin Xie;Jose Blanchet;P. Glynn;Kristan Staudenmayer;K. Schulman;D. Scheinker
  • 通讯作者:
    D. Scheinker
Optimal Sample Complexity of Reinforcement Learning for Uniformly Ergodic Discounted Markov Decision Processes
均匀遍历贴现马尔可夫决策过程的强化学习的最优样本复杂度
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengbo Wang;Jose Blanchet;Peter Glynn
  • 通讯作者:
    Peter Glynn
Modeling shortest paths in polymeric networks using spatial branching processes
使用空间分支过程对聚合物网络中的最短路径进行建模
When are Unbiased Monte Carlo Estimators More Preferable than Biased Ones?
什么时候无偏蒙特卡罗估计比有偏估计更可取?
  • DOI:
    10.48550/arxiv.2404.01431
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guanyang Wang;Jose Blanchet;P. Glynn
  • 通讯作者:
    P. Glynn
Representation Learning for Extremes
极端情况下的表征学习
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ali Hasan;Yuting Ng;Jose Blanchet;Vahid Tarokh
  • 通讯作者:
    Vahid Tarokh

Jose Blanchet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Blanchet', 18)}}的其他基金

Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229011
  • 财政年份:
    2023
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229011
  • 财政年份:
    2023
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312204
  • 财政年份:
    2023
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Fast Martingales, Large Deviations, and Randomized Gradients for Heavy-tailed Distributions
DMS-EPSRC:重尾分布的快速鞅、大偏差和随机梯度
  • 批准号:
    2118199
  • 财政年份:
    2021
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
Robust Wasserstein Profile Inference
鲁棒 Wasserstein 轮廓推断
  • 批准号:
    1915967
  • 财政年份:
    2019
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
  • 批准号:
    1838576
  • 财政年份:
    2018
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
An Approach to Robust Performance Analysis Using Optimal Transport
使用最佳传输进行鲁棒性能分析的方法
  • 批准号:
    1820942
  • 财政年份:
    2018
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
  • 批准号:
    1720451
  • 财政年份:
    2017
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Perfect Simulation of Stochastic Networks
合作研究:随机网络的完美模拟
  • 批准号:
    1538217
  • 财政年份:
    2015
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance
合作研究:保险和金融极端风险的建模和分析
  • 批准号:
    1436700
  • 财政年份:
    2014
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant

相似国自然基金

c-di-GMP调控T6SS2 ATPase影响禽致病性大肠杆菌毒力的分子机制
  • 批准号:
    32302881
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高毒力肺炎克雷伯菌T6SS效应蛋白Hcp诱导内皮细胞焦亡促发肝脓肿相关免疫血栓的机制研究
  • 批准号:
    82302325
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
益气养阴祛瘀方通过KDM4C介导的Bcl6启动子区组蛋白修饰干预SS Tfh分化的机制研究
  • 批准号:
    82374402
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
核盘菌致病相关蛋白Ss-Caf1与丙酮酸脱氢酶互作在早期分泌途径中的功能研究
  • 批准号:
    32372495
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
肠道类器官模型探讨T6SS在细菌感染过程中对宿主MAPK信号通路的调控作用及机制研究
  • 批准号:
    32300597
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

AMC-SS Collaborative research - Stochastic Processes and Time Series Models: Algorithms, Asymptotics and Phase Transitions
AMC-SS 合作研究 - 随机过程和时间序列模型:算法、渐近和相变
  • 批准号:
    0805979
  • 财政年份:
    2008
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
AMC-SS: Collaborative Research: Stochastic Processes and Time Series Models: Algorithms, Asymptotics, and Phase Transitions
AMC-SS:协作研究:随机过程和时间序列模型:算法、渐近和相变
  • 批准号:
    0806145
  • 财政年份:
    2008
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
AMC-SS, Collaborative Research: Explorations in Stochastic Moving Boundary Value Problems
AMC-SS,协作研究:随机移动边值问题的探索
  • 批准号:
    0703855
  • 财政年份:
    2007
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
AMC-SS, Collaborative Research: Explorations in Stochastic Moving Boundary Value Problems
AMC-SS,协作研究:随机移动边值问题的探索
  • 批准号:
    0705260
  • 财政年份:
    2007
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
AMC-SS: Collaborative Research: Dynamic Stochastic Optimization with Stochastic Ordering Constraints and Risk Functionals
AMC-SS:协作研究:具有随机排序约束和风险泛函的动态随机优化
  • 批准号:
    0603728
  • 财政年份:
    2006
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了