DMS-EPSRC: Fast Martingales, Large Deviations, and Randomized Gradients for Heavy-tailed Distributions

DMS-EPSRC:重尾分布的快速鞅、大偏差和随机梯度

基本信息

  • 批准号:
    2118199
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

This project investigates the theoretical underpinnings of Bayesian computational methods that are key in studying heavy-tailed distributions. These distributions are known to model the impact of highly consequential events that may be difficult to hedge against, such as hurricanes, earthquakes, pandemics, wildfires, economic shocks, among many others. In turn, Bayesian methods encompass the body of statistical theory that explains how to combine observed evidence with subjective beliefs. Despite the importance of the applications mentioned earlier, most of the computational methods for Bayesian inference are typically designed to efficiently study light-tailed distributions, which model events that are in some sense easier to hedge against. The project's goal is to study questions that lie at the heart of the convergence speed of computational methods for Bayesian inference with heavy-tailed target distributions. The methods studied in this project will provide the tools to design faster and more efficient algorithms to accurately predict high impact events such as those described above. Successfully enabling efficient and systematic Bayesian inference for heavy-tailed targets requires a breadth of expertise and research experience which would be very difficult to assemble within a single project without the DMS-EPSRC Lead Agency agreement. The results obtained in this proposal will be introduced in courses that will enhance broadening participation. The PI will attempt to recruit personnel from under-represented groups.The main goal of the project is the study of the convergence analysis to equilibrium of Markov chains which exhibit heavy-tailed features. While this goal is theoretical in nature, its motivation comes from applications: the existing theory does not apply to randomized Markov chain Monte Carlo (MCMC) algorithms with heavy-tailed targets, which nevertheless arise frequently in practice. Despite the fundamental importance of convergence to equilibrium analysis, there are important questions that have not been well studied in the literature. For instance, the presence of a spectral gap is known to be equivalent to the geometric convergence of a Markov chain. However, even under geometric convergence, ergodic estimators may still exhibit large deviation behavior of the heavy-tailed type for standard empirical means. Contributions in this direction will significantly extend the Donsker-Varadhan theory of large deviations (which is fundamental in probability). Conversely, Markov chains with heavy-tailed stationary measures typically do not have a spectral gap but might nevertheless exhibit good convergence properties. Designing quickly convergence Markov chains requires dynamics that are completely different from the standard Langevin diffusion typically used in MCMC. The PI will investigate and build a systematic theoretical treatment of the convergence to equilibrium of Markov chains with heavy-tailed stationary measures arising in randomized algorithms of computational statistics and machine learning (ML). This project will involve students and a postdoctoral associates who will visit the research teams both in the US in the UK. This will further enhance the human resource development of these participants since they will be exposed to a broad network of collaborators and ideas. The scientific output will have a substantial impact beyond applied probability in a number of sub-areas of computational statistics and ML where such targets arise.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究贝叶斯计算方法的理论基础,这些方法是研究重尾分布的关键。众所周知,这些分布可以模拟可能难以对冲的高度后果事件的影响,例如飓风、地震、流行病、野火、经济冲击等。 反过来,贝叶斯方法涵盖了统计理论的主体,解释了如何将观察到的证据与主观信念结合起来。尽管前面提到的应用很重要,但大多数贝叶斯推理的计算方法通常都是为了有效地研究轻尾分布而设计的,这种分布对在某种意义上更容易对冲的事件进行建模。该项目的目标是研究重尾目标分布贝叶斯推理计算方法收敛速度的核心问题。该项目研究的方法将提供设计更快、更有效的算法的工具,以准确预测如上所述的高影响事件。成功地对重尾目标实现高效、系统的贝叶斯推理需要广泛的专业知识和研究经验,如果没有 DMS-EPSRC 牵头机构协议,这些专业知识和研究经验很难整合到单个项目中。该提案中获得的结果将被引入课程中,以扩大参与范围。 PI将尝试从代表性不足的群体中招募人员。该项目的主要目标是研究具有重尾特征的马尔可夫链的均衡收敛分析。虽然这个目标本质上是理论性的,但其动机来自应用:现有理论不适用于具有重尾目标的随机马尔可夫链蒙特卡罗(MCMC)算法,但这种算法在实践中经常出现。尽管收敛对于均衡分析具有根本重要性,但仍有一些重要问题尚未在文献中得到充分研究。例如,已知谱间隙的存在等同于马尔可夫链的几何收敛。然而,即使在几何收敛下,遍历估计量仍可能表现出标准经验均值的重尾类型的大偏差行为。在这个方向上的贡献将显着扩展 Donsker-Varadhan 的大偏差理论(这是概率的基础)。相反,具有重尾平稳测度的马尔可夫链通常不具有谱间隙,但仍可能表现出良好的收敛特性。设计快速收敛的马尔可夫链需要与 MCMC 中通常使用的标准朗之万扩散完全不同的动力学。 PI 将利用计算统计和机器学习 (ML) 随机算法中出现的重尾平稳度量,研究并建立马尔可夫链收敛到平衡的系统理论处理。 该项目将涉及学生和博士后同事,他们将访问美国和英国的研究团队。这将进一步加强这些参与者的人力资源开发,因为他们将接触到广泛的合作者和想法网络。科学成果将在出现此类目标的计算统计和机器学习的许多子领域中产生超出应用概率的重大影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的评估进行评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wasserstein Distributionally Robust Linear-Quadratic Estimation under Martingale Constraints
鞅约束下的 Wasserstein 分布鲁棒线性二次估计
Statistical Limit Theorems in Distributionally Robust Optimization
分布鲁棒优化中的统计极限定理
  • DOI:
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blanchet, Jose;Shapiro, Alexander
  • 通讯作者:
    Shapiro, Alexander
Unbiased Optimal Stopping via the MUSE
通过 MUSE 进行无偏最优停止
  • DOI:
    10.1016/j.spa.2022.12.007
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Zhou, Zhengqing;Wang, Guanyang;Blanchet, Jose H.;Glynn, Peter W.
  • 通讯作者:
    Glynn, Peter W.
Tikhonov Regularization is Optimal Transport Robust under Martingale Constraints.
吉洪诺夫正则化是鞅约束下的最优传输鲁棒性。
Distributionally Robust Q-Learning
分布式鲁棒 Q-Learning
  • DOI:
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Zijian;Bai, Qinxun;Blanchet, Jose H.;Dong, Perry;Xu, Wei;Zhou, Zhengqing;Zhou, Zhengyuan
  • 通讯作者:
    Zhou, Zhengyuan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Blanchet其他文献

A Model of Bed Demand to Facilitate the Implementation of Data-driven Recommendations for COVID-19 Capacity Management
床位需求模型促进实施数据驱动的 COVID-19 容量管理建议
  • DOI:
    10.21203/rs.3.rs-31953/v1
  • 发表时间:
    2020-06-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Teng Zhang;Kelly A McFarlane;J. Vallon;Linying Yang;Jin Xie;Jose Blanchet;P. Glynn;Kristan Staudenmayer;K. Schulman;D. Scheinker
  • 通讯作者:
    D. Scheinker
Optimal Sample Complexity of Reinforcement Learning for Uniformly Ergodic Discounted Markov Decision Processes
均匀遍历贴现马尔可夫决策过程的强化学习的最优样本复杂度
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengbo Wang;Jose Blanchet;Peter Glynn
  • 通讯作者:
    Peter Glynn
Modeling shortest paths in polymeric networks using spatial branching processes
使用空间分支过程对聚合物网络中的最短路径进行建模
When are Unbiased Monte Carlo Estimators More Preferable than Biased Ones?
什么时候无偏蒙特卡罗估计比有偏估计更可取?
  • DOI:
    10.48550/arxiv.2404.01431
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guanyang Wang;Jose Blanchet;P. Glynn
  • 通讯作者:
    P. Glynn
Representation Learning for Extremes
极端情况下的表征学习
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ali Hasan;Yuting Ng;Jose Blanchet;Vahid Tarokh
  • 通讯作者:
    Vahid Tarokh

Jose Blanchet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Blanchet', 18)}}的其他基金

Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229011
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229011
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312204
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Robust Wasserstein Profile Inference
鲁棒 Wasserstein 轮廓推断
  • 批准号:
    1915967
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
  • 批准号:
    1838576
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
An Approach to Robust Performance Analysis Using Optimal Transport
使用最佳传输进行鲁棒性能分析的方法
  • 批准号:
    1820942
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
  • 批准号:
    1720451
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Perfect Simulation of Stochastic Networks
合作研究:随机网络的完美模拟
  • 批准号:
    1538217
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance
合作研究:保险和金融极端风险的建模和分析
  • 批准号:
    1436700
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Monte Carlo Estimation via Randomized Multilevel Methods
协作研究:通过随机多级方法进行最优蒙特卡罗估计
  • 批准号:
    1320550
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似海外基金

CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
  • 批准号:
    EP/X040828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
CHAI - EPSRC AI Hub for Causality in Healthcare AI with Real Data
CHAI - EPSRC AI 中心,利用真实数据研究医疗保健 AI 中的因果关系
  • 批准号:
    EP/Y028856/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
  • 批准号:
    EP/Y032489/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
EPSRC-SFI Aluminium-Rich Nitride Electronics (ARNE)
EPSRC-SFI 富铝氮化物电子器件 (ARNE)
  • 批准号:
    EP/X036901/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
STREAM 2: EPSRC Place Based IAA (PB-IAA);Northern Net Zero Accelerator - Energy Systems Integration for a Decarbonised Economy
流 2:EPSRC 地方基础 IAA (PB-IAA);北方净零加速器 - 脱碳经济的能源系统集成
  • 批准号:
    EP/Y024052/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了