Regularization Methods for Online Learning
在线学习的正则化方法
基本信息
- 批准号:0830410
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are many sequential decision problems which can be appropriately modeled as a repeated game, in which the decision-maker is competing with an adversary. For instance, in the problem of virus detection in a computer network, the aim is to label incoming packets as either clean or infected, while a hacker aims to design infected packets that escape detection. Similar problems arise in other areas of computer security (including spam filtering and detection of denial-of service attacks), in internet search (such as deciding if a highly-linked web page is genuinely authoritative and should have high page rank), and in financial applications (such as portfolio optimization). In these problems, the decision-maker aims to perform almost as well as the best element of some comparison class. Even for decision problems that are not inherently adversarial, it is often appealing to model them in this way, since the assumptions are sufficiently weak that effective learning algorithms for these adversarial settings are very widely applicable. Many of the key algorithmic approaches to online learning problems can be viewed as methods involving regularization, an idea that has its origins in the solution of ill-posed problems, such as statistical estimation problems. This project aims to exploit this regularization viewpoint in the analysis and design of methods for complex online learning problems. In particular, its aims are (1) To develop techniques for decision problems with limited feedback. (2) To develop techniques for decision problems with complex losses that cannot be simply decomposed into a sum across trials. (3) To develop efficient learning algorithms that can simultaneously compete effectively with a variety of rich comparison classes and a variety of constraints on the adversary. (4) To improve our understanding of the relationships between online decision problems (in adversarial settings) and statistical decision problems (in probabilistic settings). Successful research outcomes of this project are likely to increase our understanding of complex sequential decision problems and to provide design methodologies for effective learning algorithms for these problems, and hence have a significant potential for practical impact in many application areas, including computer security and computational finance.
有许多顺序决策问题可以适当地建模为重复博弈,其中决策者与对手竞争。例如,在计算机网络中的病毒检测问题中,目标是将传入数据包标记为干净或受感染,而黑客的目标是设计逃脱检测的受感染数据包。 类似的问题也出现在计算机安全的其他领域(包括垃圾邮件过滤和拒绝服务攻击检测)、互联网搜索(例如确定高度链接的网页是否真正具有权威性并且应该具有较高的页面排名)以及金融应用(例如投资组合优化)。 在这些问题中,决策者的目标是表现得几乎与某些比较类别中的最佳元素一样好。 即使对于本质上不是对抗性的决策问题,以这种方式对其进行建模通常也很有吸引力,因为假设足够弱,因此针对这些对抗性设置的有效学习算法非常广泛适用。在线学习问题的许多关键算法方法可以被视为涉及正则化的方法,正则化的想法起源于不适定问题的解决,例如统计估计问题。该项目旨在利用这种正则化观点来分析和设计复杂在线学习问题的方法。 特别是,其目标是(1)开发针对反馈有限的决策问题的技术。 (2) 开发具有复杂损失的决策问题的技术,这些损失不能简单地分解为各个试验的总和。 (3)开发高效的学习算法,能够同时与多种丰富的比较类和对对手的多种约束条件进行有效竞争。 (4) 提高我们对在线决策问题(在对抗性设置中)和统计决策问题(在概率设置中)之间关系的理解。该项目的成功研究成果可能会增加我们对复杂顺序决策问题的理解,并为这些问题的有效学习算法提供设计方法,因此在许多应用领域(包括计算机安全和计算金融)具有巨大的实际影响潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Bartlett其他文献
Mathematical Foundations of Machine Learning
机器学习的数学基础
- DOI:
10.4171/owr/2021/15 - 发表时间:
2022-03-14 - 期刊:
- 影响因子:0
- 作者:
Peter Bartlett;Cristina Butucea;Johannes Schmidt - 通讯作者:
Johannes Schmidt
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning Supplementary Material
防御拜占庭稳健分布式学习补充材料中的鞍点攻击
- DOI:
10.1111/head.12872 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Dong Yin;Yudong Chen;K. Ramchandran;Peter Bartlett - 通讯作者:
Peter Bartlett
Can a Transformer Represent a Kalman Filter?
变压器可以代表卡尔曼滤波器吗?
- DOI:
10.48550/arxiv.2312.06937 - 发表时间:
2023-12-12 - 期刊:
- 影响因子:0
- 作者:
Gautam Goel;Peter Bartlett - 通讯作者:
Peter Bartlett
Space, the final frontier: outdoor access for people living with dementia
空间,最后的前沿:痴呆症患者的户外活动
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.4
- 作者:
Elaine Argyle;T. Dening;Peter Bartlett - 通讯作者:
Peter Bartlett
Minimax Fixed-Design Linear Regression
极小极大固定设计线性回归
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Peter Bartlett; Wouter Koolen; Alan Malek; Eiji Takimoto; Manfred Warmuth - 通讯作者:
Manfred Warmuth
Peter Bartlett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Bartlett', 18)}}的其他基金
Collaboration on the Theoretical Foundations of Deep Learning
深度学习理论基础的合作
- 批准号:
2031883 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
RI: AF: Small: Optimizing probabilities for learning: sampling meets optimization
RI:AF:小:优化学习概率:采样满足优化
- 批准号:
1909365 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
RI: AF: Small: Deep Learning Theory
RI:AF:小:深度学习理论
- 批准号:
1619362 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MCS: AF: Small: Algorithms for Large Scale Prediction Problems
MCS:AF:小型:大规模预测问题的算法
- 批准号:
1115788 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Statistical Methods for Prediction of Individual Sequences
预测个体序列的统计方法
- 批准号:
0707060 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
MSPA-MCS: Collaborative Research: Statistical Learning Methods for Complex Decision Problems in Natural Language Processing
MSPA-MCS:协作研究:自然语言处理中复杂决策问题的统计学习方法
- 批准号:
0434383 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
基于深度学习与蒙特卡罗算法的在线质子自适应放疗方法研究
- 批准号:12375359
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
尿液N-糖全在线分析新方法及其在膀胱癌早期诊断标志物精准筛选中的研究
- 批准号:82302648
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合边缘智能的电力无人机巡检异构系统在线协同加速方法研究
- 批准号:52377103
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高速钢轨应力和微裂纹的磁信号映射机制及在线检测方法研究
- 批准号:52305588
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于温度调制的重金属废水多组分光谱长效在线检测方法
- 批准号:62303073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Massively-parallel functional interrogation of genetic variation in CMD-associated alpha-dystroglycan glycosylating enzymes
CMD 相关 α-肌营养不良聚糖糖基化酶遗传变异的大规模并行功能询问
- 批准号:
10802855 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
New Epidemiologic Methods for Reducing Measurement Error and Misclassification Bias in Cancer Epidemiology
减少癌症流行病学中测量误差和误分类偏差的新流行病学方法
- 批准号:
10801058 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
User-centered approach to the development of a parent toolkit to improve willingness to participate in pediatric clinical research
以用户为中心的方法开发家长工具包,以提高参与儿科临床研究的意愿
- 批准号:
10663456 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别: