MSPA-MCS: Collaborative Research: Statistical Learning Methods for Complex Decision Problems in Natural Language Processing
MSPA-MCS:协作研究:自然语言处理中复杂决策问题的统计学习方法
基本信息
- 批准号:0434383
- 负责人:
- 金额:$ 31.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Pattern classification problems that arise in natural language processing applications, such as parsing, machine translation, and speech recognition, are more complex than those commonly addressed with statistical learning methods. The broad goal of this research project is the design and analysis of statistical learning algorithms that are suitable for these problems. The research is focused on the following questions, which are motivated by characteristic properties of complex pattern classification problems in natural language processing: methods for multiclass classification with desirable statistical and computational properties; methods for structured classification, where the predicted variables come from a large set with a rich structure (for example, predicting the parse tree of a sentence); the extension of these methods to problems with hidden variables, that is, where some relevant data is not observed; and complex nonparametric models for these problems, in particular, computationally efficient nonparametric Bayesian methods based on hierarchical Dirichlet processes. The methods developed will be validated empirically on parsing, machine translation, and speech recognition problems.The research project is aimed at the development and analysis of statistical learning methods for complex decision problems, such as those that arise in natural language processing. A key goal of research in natural language processing is the development of automated systems, such as translation systems and dialogue systems. The most successful approaches involve the use of statistical methods to exploit language data, such as a text corpus. However, the decision problems that arise are very complex. A good example is the problem of parsing, or recovering the syntactic structure underlying sentences in a language. For such problems, the set of candidate decisions is very large, and possesses considerable structure. This research project is aimed at developing computational and statistical methods that are suitable for complex decision problems of this kind. Successful methods are also likely to have a significant impact in other areas of computer science, including computer vision and bioinformatics, because similar complex decision problems also arise in these areas.
自然语言处理应用(例如解析、机器翻译和语音识别)中出现的模式分类问题比统计学习方法通常解决的问题更为复杂。 该研究项目的总体目标是设计和分析适合这些问题的统计学习算法。 该研究的重点是以下问题,这些问题是由自然语言处理中复杂模式分类问题的特征驱动的:具有理想统计和计算特性的多类分类方法;结构化分类方法,其中预测变量来自具有丰富结构的大集合(例如,预测句子的解析树);将这些方法扩展到具有隐藏变量的问题,即未观察到一些相关数据的问题;以及针对这些问题的复杂非参数模型,特别是基于分层狄利克雷过程的计算高效的非参数贝叶斯方法。 所开发的方法将在解析、机器翻译和语音识别问题上进行实证验证。该研究项目旨在开发和分析复杂决策问题的统计学习方法,例如自然语言处理中出现的问题。 自然语言处理研究的一个关键目标是开发自动化系统,例如翻译系统和对话系统。 最成功的方法涉及使用统计方法来利用语言数据,例如文本语料库。 然而,出现的决策问题非常复杂。 一个很好的例子是解析或恢复语言中句子背后的句法结构的问题。 对于此类问题,候选决策集非常大,并且具有相当大的结构。 该研究项目旨在开发适用于此类复杂决策问题的计算和统计方法。 成功的方法也可能对计算机科学的其他领域产生重大影响,包括计算机视觉和生物信息学,因为这些领域也出现类似的复杂决策问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Bartlett其他文献
Mathematical Foundations of Machine Learning
机器学习的数学基础
- DOI:
10.4171/owr/2021/15 - 发表时间:
2022-03-14 - 期刊:
- 影响因子:0
- 作者:
Peter Bartlett;Cristina Butucea;Johannes Schmidt - 通讯作者:
Johannes Schmidt
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning Supplementary Material
防御拜占庭稳健分布式学习补充材料中的鞍点攻击
- DOI:
10.1111/head.12872 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Dong Yin;Yudong Chen;K. Ramchandran;Peter Bartlett - 通讯作者:
Peter Bartlett
Can a Transformer Represent a Kalman Filter?
变压器可以代表卡尔曼滤波器吗?
- DOI:
10.48550/arxiv.2312.06937 - 发表时间:
2023-12-12 - 期刊:
- 影响因子:0
- 作者:
Gautam Goel;Peter Bartlett - 通讯作者:
Peter Bartlett
Space, the final frontier: outdoor access for people living with dementia
空间,最后的前沿:痴呆症患者的户外活动
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.4
- 作者:
Elaine Argyle;T. Dening;Peter Bartlett - 通讯作者:
Peter Bartlett
Minimax Fixed-Design Linear Regression
极小极大固定设计线性回归
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Peter Bartlett; Wouter Koolen; Alan Malek; Eiji Takimoto; Manfred Warmuth - 通讯作者:
Manfred Warmuth
Peter Bartlett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Bartlett', 18)}}的其他基金
Conference: Women-in-Theory Workshop
会议:女性理论研讨会
- 批准号:
2227705 - 财政年份:2022
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Conference: Women-in-Theory Workshop
会议:女性理论研讨会
- 批准号:
2227705 - 财政年份:2022
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Foundations of Data Science Institute
数据科学研究所基础
- 批准号:
2023505 - 财政年份:2020
- 资助金额:
$ 31.81万 - 项目类别:
Continuing Grant
Collaboration on the Theoretical Foundations of Deep Learning
深度学习理论基础的合作
- 批准号:
2031883 - 财政年份:2020
- 资助金额:
$ 31.81万 - 项目类别:
Continuing Grant
RI: AF: Small: Optimizing probabilities for learning: sampling meets optimization
RI:AF:小:优化学习概率:采样满足优化
- 批准号:
1909365 - 财政年份:2019
- 资助金额:
$ 31.81万 - 项目类别:
Continuing Grant
RI: AF: Small: Deep Learning Theory
RI:AF:小:深度学习理论
- 批准号:
1619362 - 财政年份:2016
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
MCS: AF: Small: Algorithms for Large Scale Prediction Problems
MCS:AF:小型:大规模预测问题的算法
- 批准号:
1115788 - 财政年份:2011
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Regularization Methods for Online Learning
在线学习的正则化方法
- 批准号:
0830410 - 财政年份:2008
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Statistical Methods for Prediction of Individual Sequences
预测个体序列的统计方法
- 批准号:
0707060 - 财政年份:2007
- 资助金额:
$ 31.81万 - 项目类别:
Continuing Grant
相似国自然基金
FGD6/RhoD/DIAPH3调控微丝重塑在Nb2C/MCS促进内皮细胞迁移中的机制研究
- 批准号:82301145
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MCs-MCT/PAR2/TLR4通路研究健脾清化颗粒干预胃食管反流病LPS诱导的食管炎症的作用机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
益母草总生物碱抑制HIF-1α介导的MCs活化抗过敏性哮喘机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
对虾养殖池塘底泥微生物厌氧降解微囊藻毒素(MCs)的协同代谢机制研究
- 批准号:32172978
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
西天山夏季中—β尺度MCS对流云宏微特征及对降水影响研究
- 批准号:U2003106
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:联合基金项目
相似海外基金
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
- 批准号:
0732196 - 财政年份:2007
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
- 批准号:
0732169 - 财政年份:2007
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
- 批准号:
0732299 - 财政年份:2007
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
- 批准号:
0732318 - 财政年份:2007
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
- 批准号:
0732175 - 财政年份:2007
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant