CAREER: New Directions in Inapproximability and Probabilistically Checkable Proofs
职业:不可近似性和概率可检查证明的新方向
基本信息
- 批准号:0833228
- 负责人:
- 金额:$ 23.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-31 至 2012-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The central question studied in theoretical computer science is: how efficiently (fast) can computational problems be solved?While many problems do have efficient algorithms, there is a wide class of important problems (called NP-complete problems) which are very unlikely to have efficient algorithms. In practice however, it may suffice to solve these problems approximately. This research investigates whether approximate solutions to NP-complete problems can be found efficiently, and how good is the quality of approximation. The main contribution of this research is negative results, i.e. proving that for certain NP-complete problems, efficiently finding even approximate solutions is very unlikely. To illustrate the significance of proving such negative results, the investigator proves that it is unlikely to break into a certain cryptosystem, giving a guarantee of its security against malicious attacks. Another related aspect of this research is Proababilistically Checkable Proofs, a method to specify proof formats for mathematical statements, such that the validity of the proof can be checked very efficiently, by looking at only a few places in the proof instead of reading the entire proof. The research has a potential for broader impact in terms of scientific workshops, collaboration between several international researchers, developement of graduate courses, promoting undergraduate research, and advising Ph.D. students. Many computational problems arising in theory and practice are NP-complete. An extensively studied approach to cope with NP-completeness is designing polynomial time algorithms that compute approximately optimal solutions. However, it turns out that for many problems, computing approximate solutions itself is an NP-complete problem, a famous result known as the PCP Theorem, discovered in 1992. In spite of the tremendous body of research that followed this discovery, for many NP-complete problems, there is a gap between the best known approximation result, and the best known inapproximability result. This research focusses on filling this gap by proving tight inapproximability results. The PCP Theorem can also be viewed as a result about proof checking (and that is how it was discovered). It gives a way of specifying proofs for NP-statements such that the validity of the proof can be checked very efficiently. The research investigates constructions of more efficient PCPs, with further applications to inapproximability results. The techniques developed are likely to have new applications to areas like metric embeddings and learning theory. The research has a potential for broader impact in terms of scientific workshops, collaboration between international researchers, developement of graduate courses, promoting undergraduate research and advising Ph.D. students.
理论计算机科学中研究的中心问题是:如何有效地解决计算问题?尽管许多问题确实具有有效的算法,但仍有一系列重要的重要问题(称为NP完整问题),这些问题不太可能具有有效的算法。但是,实际上,大约解决这些问题可能就足够了。这项研究调查了是否可以有效地发现NP完整问题的近似解决方案,以及近似质量的良好程度。这项研究的主要贡献是负面的结果,即证明对于某些NP完整问题,有效地找到近似解决方案的不太可能是极不可能的。为了说明证明这种负面结果的重要性,研究人员证明,它不太可能闯入某个隐秘系统,从而保证其抵抗恶意攻击的安全性。这项研究的另一个相关方面是可靠的可检查证明,这是一种指定数学陈述的证明格式的方法,以便通过仅查看证明中的几个地方而不是阅读整个证明,可以非常有效地检查证明的有效性。这项研究在科学研讨会,几位国际研究人员之间的合作,研究生课程的发展,促进本科研究以及为博士学位提供建议方面具有更广泛的影响。学生。在理论和实践中引起的许多计算问题都是NP完整的。经过广泛研究的方法来应对NP完整性,正在设计计算大约最佳溶液的多项式时间算法。但是,事实证明,对于许多问题,计算近似解决方案本身是一个NP完整问题,即1992年发现的著名结果,称为PCP定理。尽管进行了这一发现之后的大量研究,但对于许多NP完整问题,对于许多NP完全解决问题,但最众所周知的近似结果和最众所周知的Inapproximability Inapproximability却存在差距。这项研究的重点是通过证明严格的不Xibibibility结果来填补这一空白。 PCP定理也可以视为证明检查(这就是发现的方式)。它提供了指定NP统计的证明的方法,以便可以非常有效地检查证明的有效性。该研究调查了更有效的PCP的结构,并进一步应用了不Xibibibility的结果。所开发的技术可能会在公制嵌入和学习理论等领域具有新的应用。这项研究在科学研讨会,国际研究人员之间的合作,研究生课程的发展,促进本科研究和建议博士学位方面具有更广泛影响的潜力。学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subhash Khot其他文献
Towards a proof of the 2-to-1 games conjecture?
证明2对1游戏猜想?
- DOI:
10.1145/3188745.3188804 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Irit Dinur;Subhash Khot;Guy Kindler;Dor Minzer;S. Safra - 通讯作者:
S. Safra
Guest column: inapproximability results via Long Code based PCPs
来宾专栏:通过基于长代码的 PCP 得出的不可近似性结果
- DOI:
10.1145/1067309.1067318 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Subhash Khot - 通讯作者:
Subhash Khot
Hardness of Finding Independent Sets in 2-Colorable and Almost 2-Colorable Hypergraphs
在 2 色和几乎 2 色超图中寻找独立集的难度
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Subhash Khot;Rishi Saket - 通讯作者:
Rishi Saket
Inapproximability Results for Computational Problems on Lattices
- DOI:
10.1007/978-3-642-02295-1_14 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Subhash Khot - 通讯作者:
Subhash Khot
SDP gaps and UGC-hardness for MAXCUTGAIN
MAXCUTGAIN 的 SDP 差距和 UGC 硬度
- DOI:
10.4086/toc.2009.v005a004 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Subhash Khot;R. O'Donnell - 通讯作者:
R. O'Donnell
Subhash Khot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subhash Khot', 18)}}的其他基金
AF: Small: Hardness of Approximation: Classical and New
AF:小:近似难度:经典和新
- 批准号:
2130816 - 财政年份:2021
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
AF: Small: Analysis, Geometry, and Hardness of Approximation
AF:小:分析、几何和近似硬度
- 批准号:
1813438 - 财政年份:2018
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
AF: Small: Challenges in Hardness of Approximation
AF:小:近似难度的挑战
- 批准号:
1422159 - 财政年份:2014
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
Collaborative Research: Understanding, Coping with, and Benefiting From, Intractability
合作研究:理解、应对棘手问题并从中受益
- 批准号:
0832795 - 财政年份:2008
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
CAREER: New Directions in Inapproximability and Probabilistically Checkable Proofs
职业:不可近似性和概率可检查证明的新方向
- 批准号:
0643626 - 财政年份:2007
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
相似国自然基金
长偶极子和大磁环构成的新电磁矢量传感器多参联合估计研究
- 批准号:61801128
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
新算子分裂法及其在可分离优化中的应用
- 批准号:11301123
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于零序电流的超高压变压器新保护原理的研究
- 批准号:51267018
- 批准年份:2012
- 资助金额:48.0 万元
- 项目类别:地区科学基金项目
二苯并呋喃-示踪油藏充注途径的新标志物
- 批准号:40972089
- 批准年份:2009
- 资助金额:48.0 万元
- 项目类别:面上项目
基于新小波的图形特征表示与提取
- 批准号:60403011
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
- 批准号:
2239106 - 财政年份:2023
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
FASEB SRC: Matricellular Proteins: Fundamental Concepts and New Directions
FASEB SRC:基质细胞蛋白:基本概念和新方向
- 批准号:
10468385 - 财政年份:2022
- 资助金额:
$ 23.99万 - 项目类别:
CAREER: New Directions in p-adic Heights and Rational Points on Curves
职业生涯:p-adic 高度和曲线上有理点的新方向
- 批准号:
1945452 - 财政年份:2020
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
CAREER: Shape Analysis in Submanifold Spaces: New Directions for Theory and Algorithms
职业:子流形空间中的形状分析:理论和算法的新方向
- 批准号:
1945224 - 财政年份:2020
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant