CAREER: New Directions in p-adic Heights and Rational Points on Curves
职业生涯:p-adic 高度和曲线上有理点的新方向
基本信息
- 批准号:1945452
- 负责人:
- 金额:$ 48.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Determining whole number solutions to polynomial equations has been an active area of study for at least two millennia. Nevertheless, many questions remain, and these equations continue to be crucially important, as the techniques used to study them have helped shape the foundation of modern cryptosystems. In 1922, Louis Mordell conjectured that equations defining curves of genus at least 2 have only finitely many rational solutions. Gerd Faltings proved this in 1983, but his proof does not explicitly yield the set of rational points on these curves. Algorithmically determining this set is one of the most fundamental open problems in number theory. Quadratic Chabauty is a new approach to determining the set of rational points, and through a combination of theoretical and computational strategies, the PI will give quadratic Chabauty algorithms to determine rational points on new classes of curves. This project also includes several educational and outreach components, including a collection of undergraduate-focused workshops in Guam on the topic of computational tools, aimed at broadening participation of traditionally underrepresented groups in STEM. The PI will also co-organize a week-long summer program in mathematical exploration and computation for high school students in the Boston area, as well as a semester program at Mathematical Sciences Research Institute on Diophantine geometry.The main research themes are centered on algorithms for determining rational points on curves of genus at least 2, using p-adic heights.They include the following: using p-adic heights to produce a quadratic Chabauty algorithm for modular curves, developing an elliptic quadratic Chabauty algorithm to study twisted Fermat curves, and building infrastructure in Coleman integration and p-adic heights in families. These new algorithms will be run on large databases of curves, and the resulting data will be analyzed and shared with the mathematical community. This has the potential to yield new insight into refined hypotheses under which theorems can be proved, as well as more precise conjectures to investigate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
确定多项式方程式的全数解决方案至少是两千年的活跃研究领域。 然而,仍然存在许多问题,这些方程式仍然至关重要,因为用于研究它们的技术有助于塑造了现代密码系统的基础。 1922年,路易·莫德尔(Louis Mordell)猜想定义属曲线的方程至少有2个有限的理性解决方案。 格丁斯(Gerd Faltings)在1983年证明了这一点,但他的证据并未明确地产生这些曲线的理性点。 从数字理论中,算法确定这一集是最根本的开放问题之一。 二次chabauty是确定合理点集的一种新方法,通过理论和计算策略的结合,PI将提供二次chabauty算法,以确定新曲线类别的合理点。该项目还包括几个教育和外展成分,包括关岛关于计算工具主题的一系列以本科生为中心的研讨会,旨在扩大传统上代表性不足的STEM的参与。 PI还将为波士顿地区的高中学生共同组织为期一周的数学探索和计算计划,以及在数学科学研究所的学期课程,主要研究主题的主要研究主题是在算法上的中心,用于确定量子的曲线,使用P-ad的曲目,包括P-aD的曲目,包括P-Adic的高度。用于模块化曲线的二次chabauty算法,开发一种椭圆形二次chabauty算法,以研究Coleman一体化和家庭中P-Adic高度的扭曲Fermat曲线以及建筑基础设施。这些新算法将在大型曲线数据库上运行,将与数学社区分析并共享所得数据。这有可能对可以证明定理的精制假设进行新的见解,并进行调查。该奖项反映了NSF的法定任务,并且认为值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来获得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quadratic Chabauty for modular curves: algorithms and examples
模曲线的二次 Chabauty:算法和示例
- DOI:10.1112/s0010437x23007170
- 发表时间:2023
- 期刊:
- 影响因子:1.8
- 作者:Balakrishnan, Jennifer S.;Dogra, Netan;Müller, J. Steffen;Tuitman, Jan;Vonk, Jan
- 通讯作者:Vonk, Jan
Even Values of Ramanujan’s Tau-Function
拉马努金 Tau 函数的偶数值
- DOI:10.1007/s44007-021-00005-8
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Balakrishnan, Jennifer S.;Ono, Ken;Tsai, Wei-Lun
- 通讯作者:Tsai, Wei-Lun
Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings
模曲线及其覆盖的超椭圆 Atkin-Lehner 商上的有理点
- DOI:10.1007/s40993-022-00388-9
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Adžaga, Nikola;Chidambaram, Shiva;Keller, Timo;Padurariu, Oana
- 通讯作者:Padurariu, Oana
A tale of three curves
三个曲线的故事
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Balakrishnan, Jennifer S.
- 通讯作者:Balakrishnan, Jennifer S.
Variants of Lehmer's speculation for newforms
莱默对新形式的推测的变体
- DOI:10.1016/j.aim.2023.109141
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Balakrishnan, Jennifer S.;Craig, William;Ono, Ken;Tsai, Wei-Lun
- 通讯作者:Tsai, Wei-Lun
共 6 条
- 1
- 2
Jennifer Balakrish...的其他基金
Rational Points on Curves and Iterated p-adic Integrals
曲线上的有理点和迭代 p 进积分
- 批准号:17021961702196
- 财政年份:2017
- 资助金额:$ 48.77万$ 48.77万
- 项目类别:Standard GrantStandard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
- 批准号:11038311103831
- 财政年份:2011
- 资助金额:$ 48.77万$ 48.77万
- 项目类别:Fellowship AwardFellowship Award
相似国自然基金
长偶极子和大磁环构成的新电磁矢量传感器多参联合估计研究
- 批准号:61801128
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
新算子分裂法及其在可分离优化中的应用
- 批准号:11301123
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于零序电流的超高压变压器新保护原理的研究
- 批准号:51267018
- 批准年份:2012
- 资助金额:48.0 万元
- 项目类别:地区科学基金项目
二苯并呋喃-示踪油藏充注途径的新标志物
- 批准号:40972089
- 批准年份:2009
- 资助金额:48.0 万元
- 项目类别:面上项目
基于新小波的图形特征表示与提取
- 批准号:60403011
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:23392742339274
- 财政年份:2024
- 资助金额:$ 48.77万$ 48.77万
- 项目类别:Continuing GrantContinuing Grant
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
- 批准号:22391062239106
- 财政年份:2023
- 资助金额:$ 48.77万$ 48.77万
- 项目类别:Continuing GrantContinuing Grant
FASEB SRC: Matricellular Proteins: Fundamental Concepts and New Directions
FASEB SRC:基质细胞蛋白:基本概念和新方向
- 批准号:1046838510468385
- 财政年份:2022
- 资助金额:$ 48.77万$ 48.77万
- 项目类别:
CAREER: Shape Analysis in Submanifold Spaces: New Directions for Theory and Algorithms
职业:子流形空间中的形状分析:理论和算法的新方向
- 批准号:19452241945224
- 财政年份:2020
- 资助金额:$ 48.77万$ 48.77万
- 项目类别:Continuing GrantContinuing Grant
CAREER: New Directions in Graph Algorithms
职业:图算法的新方向
- 批准号:17501401750140
- 财政年份:2018
- 资助金额:$ 48.77万$ 48.77万
- 项目类别:Continuing GrantContinuing Grant