AF: Small: Challenges in Hardness of Approximation
AF:小:近似难度的挑战
基本信息
- 批准号:1422159
- 负责人:
- 金额:$ 49.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A major focus in theoretical computer science is to determine the ``work" required to solve specific computational problems, efficiency being the usual goal. The work needed to solve a problem, or ``running time'', is often expressed in terms of a number n related to the problem size. A problem is ``easy'' if it is solvable by a ``fast'' algorithm (i.e. whose running time is a polynomial in n). Fast algorithms lie at the heart of much everyday computation, such as Web search engines. In contrast, for certain problems the running time is, unavoidably, an exponential function of n; hence even medium-size instances are unsolvable in practice. For other problems, including those in the class called ``NP", the exact relationship between running time and size remains unknown. Understanding and mapping the boundary between feasible and infeasible problems is the domain of computational complexity.Problems in the class ``P'' can be solved in polynomial time; problems in ``NP'', for which a candidate solution can be checked in polynomial time, cannot be solved in polynomial time today and are therefore infeasible. One way to mitigate this infeasibility is to obtain a good but approximate solution. Since the quality of an approximation may vary widely, an obvious question is how well a computationally feasible algorithm can approximate the exact solution. A significant issue is knowing whether the algorithm achieves the best possible performance; if not, a better algorithm should be sought.PI's proposed research involves determining the best approximation ratio that is computationally feasible (which amounts to proving that any better ratio is not feasible). It turns out that these ratios can be classified precisely and this research has several connections to mathematics, especially Fourier analysis and geometry. The last two decades have seen a huge progress on these questions and the current proposal is aimed at identifying and working on several challenges that are still wide open. The research goals of the proposal will be integrated with teaching, mentoring and dissemination activities. The research will involve participation of graduate students and post-doctoral fellows. The PI plans to develop research courses at graduate level to introduce budding researchers to the area. The dissemination activities will involve writing expository articles and an introductory book and organizing workshops. The PI will welcome any opportunities to guide under-graduate (and high-school) students who might be interested in having research exposure.
A major focus in theoretical computer science is to determine the ``work" required to solve specific computational problems, efficiency being the usual goal. The work needed to solve a problem, or ``running time'', is often expressed in terms of a number n related to the problem size. A problem is ``easy'' if it is solvable by a ``fast'' algorithm (i.e. whose running time is a polynomial in n).快速的算法是许多日常计算的核心,例如,对于某些问题而言,不可避免地,n的指数功能是中等大小的实例; 理解和映射可行和不可行的问题之间的边界是计算复杂性的领域。类``p''中的问题可以在多项式时间内解决。 ``np''中的问题,可以在多项式时间内检查候选解决方案,因此在今天的多项式时间内无法解决,因此是不可行的。减轻这种不可行性的一种方法是获得良好但近似的解决方案。 由于近似值的质量可能会差异很大,因此一个明显的问题是计算可行算法如何近似精确解决方案。一个重要的问题是知道该算法是否实现了最佳性能。如果不是,则应寻求更好的算法。PI的研究涉及确定计算上可行的最佳近似比(这相当于证明任何更好的比率是不可行的)。事实证明,这些比率可以精确地分类,这项研究与数学有多种联系,尤其是傅立叶分析和几何形状。在过去的二十年中,在这些问题上取得了巨大进展,目前的提案旨在识别和努力处理一些仍在敞开的挑战。该提案的研究目标将与教学,指导和传播活动相结合。这项研究将涉及研究生和博士后研究员的参与。 PI计划在研究生一级开发研究课程,以向该地区介绍萌芽的研究人员。传播活动将涉及撰写说明文章和介绍性书和组织研讨会。 PI将欢迎任何机会指导可能有兴趣进行研究曝光的学生(和高中生)学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subhash Khot其他文献
Towards a proof of the 2-to-1 games conjecture?
证明2对1游戏猜想?
- DOI:
10.1145/3188745.3188804 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Irit Dinur;Subhash Khot;Guy Kindler;Dor Minzer;S. Safra - 通讯作者:
S. Safra
Guest column: inapproximability results via Long Code based PCPs
来宾专栏:通过基于长代码的 PCP 得出的不可近似性结果
- DOI:
10.1145/1067309.1067318 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Subhash Khot - 通讯作者:
Subhash Khot
Hardness of Finding Independent Sets in 2-Colorable and Almost 2-Colorable Hypergraphs
在 2 色和几乎 2 色超图中寻找独立集的难度
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Subhash Khot;Rishi Saket - 通讯作者:
Rishi Saket
2log1-ε n hardness for the closest vector problem with preprocessing
带预处理的最接近向量问题的 2log1-ε n 硬度
- DOI:
10.1145/2213977.2214004 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Subhash Khot;P. Popat;Nisheeth K. Vishnoi - 通讯作者:
Nisheeth K. Vishnoi
Limits of Approximation Algorithms: PCPs and Unique Games (DIMACS Tutorial Lecture Notes)
近似算法的极限:PCP 和独特博弈(DIMACS 教程讲稿)
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
P. Harsha;M. Charikar;M. Andrews;Sanjeev Arora;Subhash Khot;Dana Moshkovitz;Lisa Zhang;A. Aazami;Devendra Desai;I. Gorodezky;Geetha Jagannathan;A. Kulikov;Darakhshan J. Mir;Alantha Newman;Aleksandar Nikolov;David Pritchard;Gwen Spencer - 通讯作者:
Gwen Spencer
Subhash Khot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subhash Khot', 18)}}的其他基金
AF: Small: Hardness of Approximation: Classical and New
AF:小:近似难度:经典和新
- 批准号:
2130816 - 财政年份:2021
- 资助金额:
$ 49.59万 - 项目类别:
Standard Grant
AF: Small: Analysis, Geometry, and Hardness of Approximation
AF:小:分析、几何和近似硬度
- 批准号:
1813438 - 财政年份:2018
- 资助金额:
$ 49.59万 - 项目类别:
Standard Grant
CAREER: New Directions in Inapproximability and Probabilistically Checkable Proofs
职业:不可近似性和概率可检查证明的新方向
- 批准号:
0833228 - 财政年份:2008
- 资助金额:
$ 49.59万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding, Coping with, and Benefiting From, Intractability
合作研究:理解、应对棘手问题并从中受益
- 批准号:
0832795 - 财政年份:2008
- 资助金额:
$ 49.59万 - 项目类别:
Continuing Grant
CAREER: New Directions in Inapproximability and Probabilistically Checkable Proofs
职业:不可近似性和概率可检查证明的新方向
- 批准号:
0643626 - 财政年份:2007
- 资助金额:
$ 49.59万 - 项目类别:
Continuing Grant
相似国自然基金
靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
- 批准号:32370966
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: AF: Small: Algorithmic and Information-Theoretic Challenges in Causal Inference
NSF-BSF:AF:小:因果推理中的算法和信息论挑战
- 批准号:
2321079 - 财政年份:2023
- 资助金额:
$ 49.59万 - 项目类别:
Standard Grant
AF: Small: New Challenges and Approaches in Clustering Algorithms
AF:小:聚类算法的新挑战和方法
- 批准号:
2311397 - 财政年份:2023
- 资助金额:
$ 49.59万 - 项目类别:
Standard Grant
AF: Small: Algorithmic and Market Design Challenges in Cloud Computing
AF:小:云计算中的算法和市场设计挑战
- 批准号:
2110707 - 财政年份:2021
- 资助金额:
$ 49.59万 - 项目类别:
Standard Grant
AF: Small: Challenges in Communication Complexity and Pseudorandomness
AF:小:通信复杂性和伪随机性的挑战
- 批准号:
2007682 - 财政年份:2020
- 资助金额:
$ 49.59万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: New Challenges in Graph Stream Algorithms and Related Communication Games
AF:小:协作研究:图流算法和相关通信游戏的新挑战
- 批准号:
1907738 - 财政年份:2019
- 资助金额:
$ 49.59万 - 项目类别:
Standard Grant