Symmetry and Commensurability

对称性和可通约性

基本信息

  • 批准号:
    0805908
  • 负责人:
  • 金额:
    $ 9.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0805908Principal Investigator: Genevieve S. WalshTwo n-manifolds are commensurable if they have homeomorphicfinite-sheeted covers. This notion is particularly useful for3-manifolds. For 3-manifolds which admit a geometry,commensurability respects this geometry. In light of the recentproof of geometrization for 3-manifolds, classification intocommensurability classes is a refinement of the classification of3-manifolds by which geometry they admit. This applies to3-manifolds which have been decomposed along 2-spheres and2-tori. Questions concerning virtual properties of$3$-manifolds, such as if a 3-manifold is virtually Haken orvirtually fibered, are also questions about its commensurabilityclass. Commensurability also respects certain number-theoreticproperties of 3-manifolds. A classification of hyperbolic3-manifolds up to commensurability would be very useful for thefield. A first step towards understanding commensurabilityclasses of hyperbolic 3-manifolds is understandingcommensurability classes of hyperbolic knot complements. The PIproposes to work on the conjecture that there are at most 3hyperbolic knot complements in a given commensurability class,and to understand how these commensurabilities canoccur. Commensurability is also a useful equivalence relation onhyperbolic surfaces, with the definition that two hyperbolic2-manifolds are commensurable if they have isometricfinite-sheeted covers. The PI proposes to further develop thistheory, in particular to understand commensurability classes ofsurfaces with large symmetry groups.3-manifolds are spaces which locally look like a 3-dimensionalball. In particular, our universe is a 3-manifold and we do notknow which one it is. A deeper understanding ofcommensurabilities amongst 3-manifolds would significantly refinegeometrization for 3-manifolds. Knot complements are a naturallyoccurring class of 3-manifolds, and thus good candidates forstudy. 2-manifolds, or surfaces, are spaces which locally looklike a 2-dimensional disc. Hyperbolic surfaces are the mostcommon type of surface and are used in an extremely wide varietyof scientific contexts. The study of symmetry andcommensurability is very useful for these surfaces. The PIregularly speaks on her work to diverse audiences. Any resultsfrom this research will be described in research seminars, postedon the arXiv, and broadly distributed.
摘要奖项:DMS-0805908 首席研究员:Genevieve S. Walsh 如果两个 n 流形具有同胚有限片盖,则它们是可通约的。 这个概念对于 3 流形特别有用。对于承认几何形状的 3-流形,可通约性尊重该几何形状。根据最近对 3-流形几何化的证明,可通约性类别的分类是对 3-流形所承认的几何分类的改进。这适用于已沿 2-球体和 2-环面分解的 3-流形。 关于 3 美元流形的虚拟属性的问题,例如 3 流形是否实际上是 Haken 或虚拟光纤,也是关于其可通约性类的问题。 可通约性还遵循 3-流形的某些数论性质。 双曲流形的可通约性分类对于该领域将非常有用。 理解双曲 3-流形的通约性类的第一步是理解双曲结补的通约性类。 PI 提议研究在给定的可通约性类别中最多有 3 个双曲结补的猜想,并理解这些可通约性是如何发生的。可通约性也是双曲曲面上的一种有用的等价关系,其定义是如果两个双曲流形具有等距有限片覆盖,则它们是可通约的。 PI 建议进一步发展这一理论,特别是理解具有大对称群的表面的可通约类别。3-流形是局部看起来像 3 维球的空间。 特别是,我们的宇宙是一个三流形,但我们不知道它是哪一个。 对 3 流形之间的可通约性的更深入理解将显着改进 3 流形的几何化。 结补体是一类自然存在的 3 流形,因此是很好的研究对象。 二维流形或表面是局部看起来像二维圆盘的空间。双曲曲面是最常见的曲面类型,用于极其广泛的科学环境中。 对称性和可通约性的研究对于这些表面非常有用。 PI 定期向不同的受众讲述她的工作。 这项研究的任何结果都将在研究研讨会上进行描述,发布在 arXiv 上并广泛分发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Genevieve Walsh其他文献

Great Circle Links in the Three-Sphere
  • DOI:
  • 发表时间:
    2003-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Genevieve Walsh
  • 通讯作者:
    Genevieve Walsh

Genevieve Walsh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Genevieve Walsh', 18)}}的其他基金

Conference: Thematic Program in Geometric Group Theory
会议:几何群论专题课程
  • 批准号:
    2240567
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Geometry of Subgroups
子群的几何
  • 批准号:
    2005353
  • 财政年份:
    2020
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Conference Proposal - Structure of 3-manifold Groups
会议提案 - 3流形组的结构
  • 批准号:
    1747833
  • 财政年份:
    2018
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Boundaries of Hyperbolic and Relatively Hyperbolic Groups
双曲群和相对双曲群的边界
  • 批准号:
    1709964
  • 财政年份:
    2017
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Continuing Grant
The Geometry and Topology of Groups Generated by Involutions
卷积生成群的几何和拓扑
  • 批准号:
    1207644
  • 财政年份:
    2012
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant

相似海外基金

Unconventional low dimensional fluctuation in organic conductors
有机导体非常规的低尺寸波动
  • 批准号:
    09640429
  • 财政年份:
    1997
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Quantum Transport in Low Dimensional Electrons in Superperiodic Structures
超周期结构中低维电子的量子输运研究
  • 批准号:
    06402011
  • 财政年份:
    1994
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
U.S.-Chile Cooperative Research: Symposium on Commensurability in Mesoscopic Systems, Santiago, Chile January 3-7, 1994
美国-智利合作研究:介观系统可通约性研讨会,智利圣地亚哥,1994 年 1 月 3-7 日
  • 批准号:
    9321961
  • 财政年份:
    1993
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Commensurability of scientific and indigneous ecological knowledge in coastal Melanesia: implications for contempory marine resource management strategies: WORKING PAPER
美拉尼西亚沿海科学和非自然生态知识的可通约性:对当代海洋资源管理战略的影响:工作文件
  • 批准号:
    global : 9a6d27d0-3fce-11dc-b6a8-00188b4c0af8
  • 财政年份:
  • 资助金额:
    $ 9.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了