Conference Proposal - Structure of 3-manifold Groups

会议提案 - 3流形组的结构

基本信息

  • 批准号:
    1747833
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

The conference, "Structure of 3-manifold groups" will be held in Marseille, Luminy (France) at the Centre International de Rencontres Mathematiques (CIRM) from February 26 to March 2, 2018. The organizers expect that the meeting will have about 90 participants. The award funds participation of US based mathematicians in this event. The topics covered at the conference are of high current interest with difficult outstanding problems. There have recently been new techniques developed regarding this family of problems and related conjectures regarding the structure of 3-manifold groups. The organizers expect that bringing mathematicians together from different areas with different points of view regarding these topics will serve mathematical progress. This conference is part of a semester whose aim is to foster international collaboration, particularly between the United States and France. There is time allowed for interaction and collaboration, and the mix of senior and junior mathematicians should be very productive.The conference will focus on determining which groups are the fundamental groups of 3-manifolds. Understanding which groups are 3-manifold groups is a very old problem, but there are new ways of thinking about groups that allow to make progress in certain cases. In particular, much progress has been made in the field of relatively hyperbolic groups, and specific classes of hyperbolic groups, such as free-by-cyclic groups. Specifically, the conference will cover topics about Poincare duality groups, when certain classes of groups are the fundamental groups of 3-manifolds, pro-finite completions of groups, surface subgroups of groups, and decompositions of groups analogous to decompositions of 3-manifolds. The main goal is that specific results will be obtained by bringing individuals together. There is a continuously evolving website for the meeting at https://walsh-paoluzzi.weebly.com/conference.html. In particular, interested participants can pre-register at that site.
会议“Structure of 3-manifold Group”将于2018年2月26日至3月2日在法国卢米尼马赛的国际数学竞赛中心(CIRM)举行。组织者预计会议将有约90人参加参与者。该奖项资助美国数学家参与本次活动。会议讨论的议题是当前热点问题、突出问题。最近针对这一系列问题和有关 3 流形群结构的相关猜想开发了新技术。组织者希望将来自不同领域、对这些主题持有不同观点的数学家聚集在一起,将有助于数学的进步。这次会议是一个学期的一部分,其目的是促进国际合作,特别是美国和法国之间的合作。有时间进行互动和协作,高级和初级数学家的混合应该非常富有成效。会议将集中于确定哪些群是 3-流形的基本群。理解哪些群是三流形群是一个非常老的问题,但是有一些新的思考群的方法可以在某些情况下取得进展。 特别是,在相对双曲群和特定类别的双曲群(例如自由循环群)领域取得了很大进展。具体来说,会议将涵盖有关庞加莱对偶群的主题,其中某些群是 3-流形的基本群、群的临有限完备性、群的表面子群以及类似于 3-流形分解的群分解。 主要目标是通过将个人聚集在一起来获得具体结果。 该会议有一个不断发展的网站:https://walsh-paoluzzi.weebly.com/conference.html。特别是,有兴趣的参与者可以在该网站进行预先注册。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Genevieve Walsh其他文献

Great Circle Links in the Three-Sphere
  • DOI:
  • 发表时间:
    2003-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Genevieve Walsh
  • 通讯作者:
    Genevieve Walsh

Genevieve Walsh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Genevieve Walsh', 18)}}的其他基金

Conference: Thematic Program in Geometric Group Theory
会议:几何群论专题课程
  • 批准号:
    2240567
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Geometry of Subgroups
子群的几何
  • 批准号:
    2005353
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Boundaries of Hyperbolic and Relatively Hyperbolic Groups
双曲群和相对双曲群的边界
  • 批准号:
    1709964
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Continuing Grant
The Geometry and Topology of Groups Generated by Involutions
卷积生成群的几何和拓扑
  • 批准号:
    1207644
  • 财政年份:
    2012
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Symmetry and Commensurability
对称性和可通约性
  • 批准号:
    0805908
  • 财政年份:
    2008
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant

相似国自然基金

指向提议者的共情关怀对第三方惩罚行为的影响:心理、脑与计算机制
  • 批准号:
    32371102
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
经济博弈中提议者对先前第三方干预者的分配公平性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于深度层次特征相似性度量的视觉跟踪方法研究
  • 批准号:
    61773397
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
构造类型专家系统及其开发工具的研究
  • 批准号:
    68875006
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Proposal of electronic holography using phase mosaic structure
使用相位镶嵌结构的电子全息术的提案
  • 批准号:
    23K17759
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
CRCNS:US-lsrael Research Proposal: To Elucidate Fundamental Mechanisms of Transformed Saliency Map to
CRCNS:美国-以色列研究提案:阐明显着图转变的基本机制
  • 批准号:
    10831116
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Supplement Proposal-A Pediatric Clinical Center for Molecular Transducers of Physical Activity (MoTrPAC): Towards a Molecular Map of Exercise in the Pediatric Origins of Health Across the Lifespan
补充提案-体力活动分子传感器儿科临床中心 (MoTrPAC):构建儿科全生命周期健康起源的运动分子图谱
  • 批准号:
    10894540
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Incorporating Quantitative Analysis and Digital Database Use in Structure and Tectonics Research and Teaching: Proposal for a Summer School
将定量分析和数字数据库的使用纳入结构和构造研究与教学:关于暑期学校的建议
  • 批准号:
    2222610
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
CRCNS US-German Research Proposal: Quantitative and Computational Dissection of Glutamatergic Crosstalk at Tripartite Synapses
CRCNS 美德研究提案:三方突触谷氨酸能串扰的定量和计算剖析
  • 批准号:
    10612169
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了