Conference: Thematic Program in Geometric Group Theory

会议:几何群论专题课程

基本信息

  • 批准号:
    2240567
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This award provides support for US based participants in the semester-long thematic program in Geometric Group Theory to be held at the CRM in Montreal, Canada during the months of January–June, 2023. More particularly the award will support the travel of approximately 50 junior participants from institutions in the United States to the conferences and workshops taking place as part of the program. Geometric Group Theory is the branch of mathematics concerned with the symmetries of abstract geometric objects, which range from graphs (systems of networks) to surfaces to three-dimensional shapes such as our physical universe. The geometric study of symmetries is an active and rapidly expanding field. This award will enhance the conferences with additional connections and collaborations, and benefit US institutions by spreading new techniques, questions and research ideas, thus contributing to the training of the next generation of mathematicians. The semester program will include 6 workshops around vibrant sub-areas of Geometric Group Theory: “Measured group theory” looks at groups from a probabilistic perspective and is highly interdisciplinary; “Cube complexes and combinatorial nonpositive curvature” includes new topics within a very well-established subfield of geometric group theory; “Geometry of subgroups” concerns the study of the geometry and finiteness properties of subgroups and is an emerging area in the field; “Groups around 3-manifolds” involves the interplay between 3-manifolds and Lie groups with geometric group theory; “Orderable groups” studies groups with an invariant left-order and is a classical topic that has become of recent interest through a broad range of applications; and “Huge groups” studies groups acting with infinite stabilizers and seeks to broaden successful aspects of the current theory.More details about the semester activities can be found at this website: https://www.crmath.ca/en/activities/#/type/activity/id/38271 Please report errors in award information by writing to: awardsearch@nsf.gov.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为 2023 年 1 月至 6 月在加拿大蒙特利尔 CRM 举办的为期一学期的几何群理论主题课程的美国参与者提供支持。更具体地说,该奖项将支持大约 50 名学生的旅行来自美国机构的初级参与者参加了作为该计划的一部分举行的会议和研讨会。 几何群理论是与抽象几何对象的对称性有关的数学分支,其范围从图形(网络系统)到曲面到。对称性的几何研究是一个活跃且迅速扩展的领域,该奖项将通过更多的联系和合作来加强会议,并通过传播新技术、问题和研究思想使美国机构受益。该学期课程将包括围绕几何群理论充满活力的子领域的 6 个研讨会:“测量群理论”从概率角度看待群,并且是高度跨学科的。 “组合非正曲率”包括几何群论的一个非常成熟的子领域内的新主题;“子群几何”涉及子群的几何和有限性性质的研究,是该领域的一个新兴领域;流形”涉及 3 流形与几何群论中的李群之间的相互作用,研究具有不变左序的群;通过广泛的应用而引起人们的兴趣;“巨大群体”研究具有无限稳定剂的群体,并寻求扩大当前理论的成功方面。有关学期活动的更多详细信息,请访问此网站:https:// www.crmath.ca/en/activities/#/type/activity/id/38271 请写信报告奖项信息中的错误:awardsearch@nsf.gov。该奖项反映了 NSF 的法定使命,并通过评估被认为值得支持使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Genevieve Walsh其他文献

Great Circle Links in the Three-Sphere
  • DOI:
  • 发表时间:
    2003-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Genevieve Walsh
  • 通讯作者:
    Genevieve Walsh

Genevieve Walsh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Genevieve Walsh', 18)}}的其他基金

Geometry of Subgroups
子群的几何
  • 批准号:
    2005353
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Conference Proposal - Structure of 3-manifold Groups
会议提案 - 3流形组的结构
  • 批准号:
    1747833
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Boundaries of Hyperbolic and Relatively Hyperbolic Groups
双曲群和相对双曲群的边界
  • 批准号:
    1709964
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
The Geometry and Topology of Groups Generated by Involutions
卷积生成群的几何和拓扑
  • 批准号:
    1207644
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Symmetry and Commensurability
对称性和可通约性
  • 批准号:
    0805908
  • 财政年份:
    2008
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

专题研讨类:大气环境减污-降碳-增效学术研讨会
  • 批准号:
    22342012
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
专题研讨类:配位化学学科发展
  • 批准号:
    22342004
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
专题研讨类:化学遗传学与新药发现前沿论坛
  • 批准号:
    22342015
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
专题研讨类:未来膜传递理论与技术发展
  • 批准号:
    22342018
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
专题研讨类:超快化学面临的挑战和新机遇
  • 批准号:
    22342007
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目

相似海外基金

Conference: CRM Thematic Program in Geometric Analysis
会议:几何分析中的 CRM 主题课程
  • 批准号:
    2401549
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Equitable population health impacts: a career program of research focusing on foundations of population and public health across diverse thematic areas.
公平的人口健康影响:一个职业研究计划,重点关注不同主题领域的人口和公共卫生基础。
  • 批准号:
    403882
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
Mathematical Challenges in Many-Body Physics and Quantum Information: CRM Thematic Program.
多体物理和量子信息中的数学挑战:CRM 主题计划。
  • 批准号:
    1813177
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Travel Support for a Thematic Program in Strong Logics
强逻辑主题节目的差旅支持
  • 批准号:
    1607793
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Thematic Program on Geometric Analysis and Spectral Theory
几何分析与谱理论专题课程
  • 批准号:
    1647230
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了