Conference: Thematic Program in Geometric Group Theory
会议:几何群论专题课程
基本信息
- 批准号:2240567
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides support for US based participants in the semester-long thematic program in Geometric Group Theory to be held at the CRM in Montreal, Canada during the months of January–June, 2023. More particularly the award will support the travel of approximately 50 junior participants from institutions in the United States to the conferences and workshops taking place as part of the program. Geometric Group Theory is the branch of mathematics concerned with the symmetries of abstract geometric objects, which range from graphs (systems of networks) to surfaces to three-dimensional shapes such as our physical universe. The geometric study of symmetries is an active and rapidly expanding field. This award will enhance the conferences with additional connections and collaborations, and benefit US institutions by spreading new techniques, questions and research ideas, thus contributing to the training of the next generation of mathematicians. The semester program will include 6 workshops around vibrant sub-areas of Geometric Group Theory: “Measured group theory” looks at groups from a probabilistic perspective and is highly interdisciplinary; “Cube complexes and combinatorial nonpositive curvature” includes new topics within a very well-established subfield of geometric group theory; “Geometry of subgroups” concerns the study of the geometry and finiteness properties of subgroups and is an emerging area in the field; “Groups around 3-manifolds” involves the interplay between 3-manifolds and Lie groups with geometric group theory; “Orderable groups” studies groups with an invariant left-order and is a classical topic that has become of recent interest through a broad range of applications; and “Huge groups” studies groups acting with infinite stabilizers and seeks to broaden successful aspects of the current theory.More details about the semester activities can be found at this website: https://www.crmath.ca/en/activities/#/type/activity/id/38271 Please report errors in award information by writing to: awardsearch@nsf.gov.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为我们在2023年1月至6月在加拿大蒙特利尔的CRM举行的几何学小组理论主题课程的我们的参与者提供了支持。更特别的是,该奖项将支持大约50名初级参与者从美国机构旅行到美国的会议和车间作为该计划的一部分。几何组理论是与抽象几何对象的对称性有关的数学分支,从图(网络系统)到表面到三维形状,例如我们的物理宇宙等三维形状。对称性的几何研究是一个活跃而快速扩展的场。该奖项将通过额外的联系和协作来增强会议,并通过传播新技术,问题和研究思想来使我们的机构受益,从而为下一代数学家的培训做出贡献。学期课程将包括围绕几何群体理论的充满活力的子区域的6个研讨会:“测得的群体理论”从概率的角度看群体,并且是高度跨学科的; “立方体复合物和组合非阳性曲率”包括在非常公认的几何群体理论子领域中的新主题; “亚组的几何形状”涉及对亚组的几何特性的研究,并且是该领域的新兴区域。 “围绕3个manifolds的群体”涉及与几何群体理论之间的3个manifolds和谎言组之间的相互作用。 “有序小组”研究小组的左顺序研究小组,是一个经典的主题,通过广泛的应用已引起人们的近期关注;以及“大型小组”研究小组,与无限稳定器一起行动并试图扩大当前理论的成功方面。有关学期活动的更多详细信息,请参见此网站:https://wwwww.crmath.ca/en/activities/tactivities/tactivities/#/type/activition/activition/activition/activition/activition/activitive/ID/ID/38271请在奖励范围内通过奖励信息:任务,并通过评估使用基金会的知识分子和更广泛的影响审查标准,被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Genevieve Walsh其他文献
Great Circle Links in the Three-Sphere
- DOI:
- 发表时间:
2003-08 - 期刊:
- 影响因子:0
- 作者:
Genevieve Walsh - 通讯作者:
Genevieve Walsh
Genevieve Walsh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Genevieve Walsh', 18)}}的其他基金
Conference Proposal - Structure of 3-manifold Groups
会议提案 - 3流形组的结构
- 批准号:
1747833 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Boundaries of Hyperbolic and Relatively Hyperbolic Groups
双曲群和相对双曲群的边界
- 批准号:
1709964 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
The Geometry and Topology of Groups Generated by Involutions
卷积生成群的几何和拓扑
- 批准号:
1207644 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
基于并联动态键的多模式精准调控动态性共价适应网络
- 批准号:52363018
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
基于层级约束解析动力学建模的多移动作业机器人避碰协同控制
- 批准号:52305084
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
晶界处氦泡对UNS N10003合金高温力学性能定量影响研究
- 批准号:12305293
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
任意域上结合方案的Terwilliger代数的研究
- 批准号:12301017
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
尺寸效应与织构调控Cu-Nb复合线材疲劳裂纹萌生的细观机理研究
- 批准号:12302093
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: CRM Thematic Program in Geometric Analysis
会议:几何分析中的 CRM 主题课程
- 批准号:
2401549 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Equitable population health impacts: a career program of research focusing on foundations of population and public health across diverse thematic areas.
公平的人口健康影响:一个职业研究计划,重点关注不同主题领域的人口和公共卫生基础。
- 批准号:
403882 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Mathematical Challenges in Many-Body Physics and Quantum Information: CRM Thematic Program.
多体物理和量子信息中的数学挑战:CRM 主题计划。
- 批准号:
1813177 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Travel Support for a Thematic Program in Strong Logics
强逻辑主题节目的差旅支持
- 批准号:
1607793 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Thematic Program on Geometric Analysis and Spectral Theory
几何分析与谱理论专题课程
- 批准号:
1647230 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant