Inference in Econometric Models with Asymptotic Discontinuities

具有渐近不连续性的计量经济模型的推论

基本信息

  • 批准号:
    0751517
  • 负责人:
  • 金额:
    $ 20.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-03-01 至 2012-02-29
  • 项目状态:
    已结题

项目摘要

This proposal deals with the problem of inference based on statistics whose asymptotic distributions are discontinuous functions of the true distribution that generates the observations. Numerous problems in econometrics and other areas of statistics exhibit this feature. The proposal involves a combination of (i) the development of new and improved general methods for inference based on statistics with asymptotic discontinuities and (ii) further analysis of particular models where asymptotic discontinuities arise. General methods that are not based on subsampling or the m out of n bootstrap are developed. The motivation for this is that there are reasons to believe that subsampling and m out of n bootstrap-based tests do not provide as high power as is possible in models with asymptotic discontinuities. In addition, the latter methods are well known to exhibit relatively large errors in asymptotic size.Considerable effort will be devoted to moment inequality models. For such models, this project investigates a new class of generalized moment selection procedures and recursive size-correction procedures. The project introduces new procedures for conditional moment inequality models. It analyzes existing and develops new confidence sets and tests in nonlinear regression, ARMA(1, 1), threshold AR, and stochastic dominance models, all of which exhibit asymptotic discontinuities. Finally, this project undertakes research on the asymptotic risk of estimators and measures of uncertainly in the context of asymptotic discontinuities.On a different topic, this project studies a new method of heteroskedasticity and autocorrelation (HAC) inference based on combining ideas in Ibragimov and Müller (2006) and Andrews (2004). Finally, the project continues research initiated in Andrews, Moreira, and Stock (2006) on optimal inference with weak instruments. This research focuses on inference in the presence of heteroskedasticity.The broader impact of the proposed research includes the following. (i) The proposed research will benefit society through improved empirical methods that lead to more accurate empirical research and, consequently, better informed policy analysis.(ii) The research will promote teaching and training through the use of graduate students as research assistants and collaborative researchers and through the development of lecture notes related to the sponsored research. (iii) The research will involve groups that are under-represented in economics and econometrics, in particular women. Four of the graduate students that the PI will work with, viz., Xu Cheng, Yaxin Duan, Sun-Young Park, and Xiaoxia Shi, are women. (iv) The research will enhance infrastructure by making new computer software available for use by the profession. (v) The results of the research will be disseminated broadly via presentation at international conferences
该提案涉及基于统计的推理问题,该统计的渐近分布是生成观测值的真实分布的不连续函数。该提案涉及以下特征的组合:(i)发展。基于渐近不连续性的统计的新的和改进的一般推理方法,以及(ii)对出现渐近不连续性的特定模型的进一步分析。开发子采样或 m out of n bootstrap 的动机是,有理由相信子采样和基于 m out of n bootstrap 的测试不能在具有渐近不连续性的模型中提供尽可能高的功效。 ,众所周知,后一种方法在渐进大小方面表现出相对较大的误差。对于此类模型,该项目将投入大量精力研究一类新的广义矩选择程序和。该项目引入了条件矩不等式模型的新程序,并在非线性回归、ARMA(1, 1)、阈值 AR 和随机优势模型中嵌套并开发了新的置信集和测试。最后,该项目对渐近不连续性背景下的估计量和不确定性测度进行了研究。在另一个主题上,该项目研究了基于 Ibragimov 和 Müller (2006) 以及 Andrews (2004) 的思想的新异方差和自相关 (HAC) 推理方法,该项目继续了 Andrews、Moreira 和 Stock (2006) 发起的关于弱工具最优推理的研究。本研究的重点是存在异方差的情况下的推理。拟议研究的更广泛影响包括以下内容: (i) 拟议研究将通过改进造福社会。实证方法,从而进行更准确的实证研究,从而进行更明智的政策分析。(ii)该研究将通过使用研究生作为研究助理和合作研究人员以及通过编写与(iii) 该研究将涉及经济学和计量经济学领域代表性不足的群体,特别是 PI 将合作的四名研究生,即 Xu Cheng、Yaxin Duan、Sun-Young Park 和史晓霞,女性。 (iv) 该研究将通过提供供专业人士使用的新计算机软件来加强基础设施。 (v) 研究结果将通过在国际会议上的演讲进行广泛传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Andrews其他文献

Série Scientifique Scientific Series Semi-parametric Weak Instrument Regressions with an Application to the Risk-return Trade-off Semi-parametric Weak Instrument Regressions with an Application to the Risk-return Trade-off*
Série Scientifique 科学系列 半参数弱工具回归应用于风险回报权衡 半参数弱工具回归应用于风险回报权衡*
  • DOI:
    10.1300/j020v23n04_02
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    B. Perron;Peter Phillips;Oliver Linton;Donald Andrews;Hyungsik Moon;John W. Galbraith;Yale Toronto;Concordia
  • 通讯作者:
    Concordia
The Proximal Bootstrap for Constrained Estimators
约束估计器的近端引导程序
  • DOI:
    10.1016/j.jlp.2020.104237
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Jessie Li;Donald Andrews;Andrés Aradillas;Stéphane Bonhomme;Xiaohong Chen;Timothy Christensen;Jean;Bulat Gafarov;Patrik Guggenberger;Marc Henry;Michael Jansson;Sung Jae Jun;Luofeng Liao;J. Pinkse;Jack Porter;Demian Pouzo;Andres Santos;Xiaoxia Shi;Azeem M. Shaikh;Ale;er Torgovitsky;er;Takuya Ura
  • 通讯作者:
    Takuya Ura
A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization
用于流行病控制优化的模拟深度强化学习(SiRL)方法
  • DOI:
    10.1007/s10479-022-04926-7
  • 发表时间:
    2022-09-26
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Sabah Bushaj;Xuecheng Yin;Arjeta Beqiri;Donald Andrews;˙I. Esra Büyüktahtakın
  • 通讯作者:
    ˙I. Esra Büyüktahtakın

Donald Andrews的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Andrews', 18)}}的其他基金

Robust Inference in Econometrics
计量经济学中的稳健推论
  • 批准号:
    1656313
  • 财政年份:
    2017
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Continuing Grant
Advances in Econometrics for Treatment Effect Bounds, Time-Varying-Parameter Nonstationary/Stationary Autoregressive Models, and Identification-Robust Inference
治疗效果界限、时变参数非平稳/平稳自回归模型和识别稳健推理的计量经济学进展
  • 批准号:
    1355504
  • 财政年份:
    2014
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Standard Grant
Estimation and Inference in Econometric Models with Asymptotic Discontinuities
具有渐近不连续性的计量经济模型中的估计和推理
  • 批准号:
    1058376
  • 财政年份:
    2011
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Continuing Grant
Adaptive Estimation, the Block-Block Bootstrap, Optimal Tests with Weak Instruments, and Inference with Common Shocks
自适应估计、块-块引导、弱仪器的最佳测试以及常见冲击的推理
  • 批准号:
    0417911
  • 财政年份:
    2004
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Continuing Grant
Research in Econometric Methods
计量经济学方法研究
  • 批准号:
    0001706
  • 财政年份:
    2001
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Continuing Grant
Topics in Econometric Methods
计量经济学方法主题
  • 批准号:
    9730277
  • 财政年份:
    1998
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Continuing Grant
Testing and Estimation of Econometric Models
计量经济模型的检验和估计
  • 批准号:
    9410675
  • 财政年份:
    1995
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Continuing Grant
U.S.-Austria Cooperative Research: Testing and Estimation ofModels with Structural Change
美国-奥地利合作研究:结构变化模型的测试和估计
  • 批准号:
    9215258
  • 财政年份:
    1993
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Standard Grant
Functional Limit Theory in Econometrics
计量经济学中的函数极限理论
  • 批准号:
    9121914
  • 财政年份:
    1992
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Continuing Grant
Workshops on Applications of Functional Limit Theory to Econometrics and Statistics to be held at Yale University, New Haven, CT., Fall and Spring Academic Year 91, 92 and 93
功能极限理论在计量经济学和统计学中的应用研讨会将于第 91、92 和 93 学年秋季和春季在康涅狄格州纽黑文市耶鲁大学举办
  • 批准号:
    9100865
  • 财政年份:
    1991
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Continuing Grant

相似国自然基金

共享平台用户可持续消费行为与平台绩效研究——基于人工智能、机器学习与计量经济学的方法
  • 批准号:
    72272075
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
几类经典计量经济学模型的高维理论和应用
  • 批准号:
    72073143
  • 批准年份:
    2020
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
在线医疗社区的经济和社会价值分析:机器学习与计量经济学的结合运用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
计量经济学中的一致置信带:理论与应用
  • 批准号:
    71903190
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
参数维度增加的高阶空间自回归模型的变量选择方法研究
  • 批准号:
    71903163
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A theory of statistical inference for semiparametric econometric models(Fostering Joint International Research)
半参数计量经济模型的统计推断理论(促进国际联合研究)
  • 批准号:
    16KK0074
  • 财政年份:
    2017
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Collaborative Research: Monetary DSGE Models at the Zero Lower Bound: Policy Analysis and Econometric Inference
合作研究:零下限的货币 DSGE 模型:政策分析和计量经济学推理
  • 批准号:
    1425740
  • 财政年份:
    2014
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Standard Grant
A theory of statistical inference for semiparametric econometric models
半参数计量经济模型的统计推断理论
  • 批准号:
    26780133
  • 财政年份:
    2014
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Collaborative Research: Monetary DSGE Models at the Zero Lower Bound: Policy Analysis and Econometric Inference
合作研究:零下限的货币 DSGE 模型:政策分析和计量经济学推理
  • 批准号:
    1424843
  • 财政年份:
    2014
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Standard Grant
Semiparametric Estimation and Inference in Partially Identified Econometric Models
部分识别计量经济模型中的半参数估计和推理
  • 批准号:
    1357653
  • 财政年份:
    2014
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了