Estimation and Inference in Econometric Models with Asymptotic Discontinuities
具有渐近不连续性的计量经济模型中的估计和推理
基本信息
- 批准号:1058376
- 负责人:
- 金额:$ 24.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-03-15 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal considers estimation and inference methods for models that exhibit problems with identification. Such models are common in many areas of economics and other social sciences, as well as biological sciences. When a model is well identified, standard methods available in the literature can be used to carry out inference. However, when identification is weak or when identification is only partial, such methods are not reliable. Typically, they lead to invalid and potentially misleading inference.We propose to investigate the property of standard methods when identification is only weak. We will consider a general class of estimation and inference methods and determine when the methods are reliable and when they are not. The results will apply to maximum likelihood, least squares, and generalized method of moments estimators and tests. Next, we will develop methods that are robust to the existence of weak identification in parts of the parameter space. These results will apply to a broad class of cross-section and time series models used in economics. For example, they will apply to the work-horse autoregressive-moving average (1, 1) time series model. The results also will apply to nonlinear regression models, smooth transition autoregressive models, binary choice models, and instrumental variables models. These models are employed routinely in macroeconomics times series applications and labor, public finance, and development applications. Considerable time and effort will be spent in applying the general results to specific models.In this proposal, we will also develop new methods for carrying out inference when there is a complete breakdown of identification in a model. In this case, it is not possible to consistently estimate the unknown parameters in the model. However, it still is possible to construct valid tests and confidence intervals. We will do this when the models under consideration specify a number of conditional moment inequalities and/or equalities, as is common in many incomplete economic models. For example, game theory models with multiple equilibria, which are used in industrial organization, often exhibit this feature. We will consider the case where there are a large, possibly infinite, number of moment conditions, as well as the case where the unknown quantity of interest is a nonparametric quantity. In all cases, we will establish the uniform large sample validity of the proposed methods.We will also address long-standing issues of testing subsequent to model selection. This is a common scenario in empirical applications in economics. It is well-known that methods that ignore model selection do not exhibit correct size. In previous research, we have developed some methods that circumvent this problem. Here we aim to go a step further and determine methods that have correct size and are optimal in a specific sense.Recently in the literature, there have been a number of new methods introduced that improve estimators in problems where there are a large number of parameters, such as a large number of regression parameters, with only a small number of non-zero parameters. Model scenarios with these properties are called sparse. These estimation results are quite useful and are being employed increasingly in economics. However, few methods are available for carrying out tests and constructing confidence intervals in sparse models. This proposal will investigate optimal tests in sparse models. Such results will yield either useful new methods or impossibility results showing that existing methods cannot be improved upon significantly.The proposed research will benefit society through improved empirical methods that lead to more accurate empirical research and, consequently, better informed policy analysis. The research will promote teaching and training through the use of graduate students as research assistants and collaborative researchers. The research will enhance infrastructure by making new computer software available for use by the profession. The results of the research will be disseminated broadly via presentation at international conferences.
该提案考虑了存在识别问题的模型的估计和推理方法。 这种模型在经济学和其他社会科学以及生物科学的许多领域都很常见。 当模型被很好地识别后,可以使用文献中可用的标准方法来进行推理。 然而,当识别较弱或仅部分识别时,这种方法并不可靠。通常,它们会导致无效且可能误导性的推论。我们建议在识别能力较弱时研究标准方法的属性。 我们将考虑一类一般的估计和推理方法,并确定这些方法何时可靠、何时不可靠。 结果将应用于最大似然法、最小二乘法以及矩估计器和测试的广义方法。接下来,我们将开发对参数空间部分弱识别的存在具有鲁棒性的方法。 这些结果将适用于经济学中使用的广泛的横截面模型和时间序列模型。例如,它们将应用于主力自回归移动平均 (1, 1) 时间序列模型。 结果也适用于非线性回归模型、平滑过渡自回归模型、二元选择模型和工具变量模型。这些模型通常用于宏观经济学时间序列应用以及劳工、公共财政和发展应用。将花费大量的时间和精力将一般结果应用于特定模型。在本提案中,我们还将开发新的方法,用于在模型中的识别完全崩溃时进行推理。 在这种情况下,不可能一致地估计模型中的未知参数。 然而,仍然可以构建有效的检验和置信区间。 当所考虑的模型指定了许多条件矩不等式和/或等式时,我们将这样做,这在许多不完整的经济模型中很常见。 例如,产业组织中使用的多重均衡博弈论模型就经常表现出这一特征。 我们将考虑存在大量(可能是无限)矩条件的情况,以及感兴趣的未知量是非参数量的情况。 在所有情况下,我们都将建立所提出方法的统一大样本有效性。我们还将解决模型选择后长期存在的测试问题。 这是经济学实证应用中的常见情况。 众所周知,忽略模型选择的方法不会表现出正确的大小。在之前的研究中,我们开发了一些方法来规避这个问题。在这里,我们的目标是更进一步,确定具有正确大小并且在特定意义上最优的方法。最近,在文献中引入了许多新方法,可以改进存在大量参数的问题中的估计器,比如有大量的回归参数,只有少量的非零参数。 具有这些属性的模型场景称为稀疏模型。 这些估计结果非常有用,并且在经济学中得到越来越多的应用。 然而,很少有方法可用于在稀疏模型中进行测试和构建置信区间。 该提案将研究稀疏模型中的最佳测试。 这些结果将产生有用的新方法或不可能的结果,表明现有方法无法得到显着改进。所提出的研究将通过改进的实证方法造福社会,从而导致更准确的实证研究,从而产生更明智的政策分析。 该研究将通过使用研究生作为研究助理和合作研究人员来促进教学和培训。 该研究将通过提供新的计算机软件供专业人士使用来增强基础设施。 研究结果将通过在国际会议上的演讲来广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Andrews其他文献
Série Scientifique Scientific Series Semi-parametric Weak Instrument Regressions with an Application to the Risk-return Trade-off Semi-parametric Weak Instrument Regressions with an Application to the Risk-return Trade-off*
Série Scientifique 科学系列 半参数弱工具回归应用于风险回报权衡 半参数弱工具回归应用于风险回报权衡*
- DOI:
10.1300/j020v23n04_02 - 发表时间:
2005 - 期刊:
- 影响因子:0.9
- 作者:
B. Perron;Peter Phillips;Oliver Linton;Donald Andrews;Hyungsik Moon;John W. Galbraith;Yale Toronto;Concordia - 通讯作者:
Concordia
The Proximal Bootstrap for Constrained Estimators
约束估计器的近端引导程序
- DOI:
10.1016/j.jlp.2020.104237 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:3.5
- 作者:
Jessie Li;Donald Andrews;Andrés Aradillas;Stéphane Bonhomme;Xiaohong Chen;Timothy Christensen;Jean;Bulat Gafarov;Patrik Guggenberger;Marc Henry;Michael Jansson;Sung Jae Jun;Luofeng Liao;J. Pinkse;Jack Porter;Demian Pouzo;Andres Santos;Xiaoxia Shi;Azeem M. Shaikh;Ale;er Torgovitsky;er;Takuya Ura - 通讯作者:
Takuya Ura
A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization
用于流行病控制优化的模拟深度强化学习(SiRL)方法
- DOI:
10.1007/s10479-022-04926-7 - 发表时间:
2022-09-26 - 期刊:
- 影响因子:4.8
- 作者:
Sabah Bushaj;Xuecheng Yin;Arjeta Beqiri;Donald Andrews;˙I. Esra Büyüktahtakın - 通讯作者:
˙I. Esra Büyüktahtakın
Donald Andrews的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Andrews', 18)}}的其他基金
Advances in Econometrics for Treatment Effect Bounds, Time-Varying-Parameter Nonstationary/Stationary Autoregressive Models, and Identification-Robust Inference
治疗效果界限、时变参数非平稳/平稳自回归模型和识别稳健推理的计量经济学进展
- 批准号:
1355504 - 财政年份:2014
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Inference in Econometric Models with Asymptotic Discontinuities
具有渐近不连续性的计量经济模型的推论
- 批准号:
0751517 - 财政年份:2008
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Adaptive Estimation, the Block-Block Bootstrap, Optimal Tests with Weak Instruments, and Inference with Common Shocks
自适应估计、块-块引导、弱仪器的最佳测试以及常见冲击的推理
- 批准号:
0417911 - 财政年份:2004
- 资助金额:
$ 24.34万 - 项目类别:
Continuing Grant
Testing and Estimation of Econometric Models
计量经济模型的检验和估计
- 批准号:
9410675 - 财政年份:1995
- 资助金额:
$ 24.34万 - 项目类别:
Continuing Grant
U.S.-Austria Cooperative Research: Testing and Estimation ofModels with Structural Change
美国-奥地利合作研究:结构变化模型的测试和估计
- 批准号:
9215258 - 财政年份:1993
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Functional Limit Theory in Econometrics
计量经济学中的函数极限理论
- 批准号:
9121914 - 财政年份:1992
- 资助金额:
$ 24.34万 - 项目类别:
Continuing Grant
Workshops on Applications of Functional Limit Theory to Econometrics and Statistics to be held at Yale University, New Haven, CT., Fall and Spring Academic Year 91, 92 and 93
功能极限理论在计量经济学和统计学中的应用研讨会将于第 91、92 和 93 学年秋季和春季在康涅狄格州纽黑文市耶鲁大学举办
- 批准号:
9100865 - 财政年份:1991
- 资助金额:
$ 24.34万 - 项目类别:
Continuing Grant
相似国自然基金
基于知识推理的网络威胁归因技术研究
- 批准号:62372129
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于行为因果推理的跨网络用户对齐技术研究
- 批准号:62302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多视图数据信息粒联邦学习与规则推理方法研究
- 批准号:62376279
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
知识图谱可解释性混合推理技术研究
- 批准号:62376055
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
融合符号推理与深度学习的复杂语境下实体关系抽取技术研究
- 批准号:62376033
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Semiparametric Estimation and Inference in Partially Identified Econometric Models
部分识别计量经济模型中的半参数估计和推理
- 批准号:
1357653 - 财政年份:2014
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
"Semiparametric Estimation and Inference in Partially Identified Econometric Models"
“部分确定的计量经济模型中的半参数估计和推理”
- 批准号:
1230071 - 财政年份:2012
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Estimation and Inference with Nonparametric and High-Dimensional Econometric Models
非参数和高维计量经济模型的估计和推断
- 批准号:
0817552 - 财政年份:2008
- 资助金额:
$ 24.34万 - 项目类别:
Continuing Grant
Jackknife Methods of Estimation and Inference in Dynamic Econometric Models
动态计量经济模型中的折刀估计和推理方法
- 批准号:
ES/G010218/1 - 财政年份:2008
- 资助金额:
$ 24.34万 - 项目类别:
Research Grant
Estimation of Waste Generation in East Asian Countries and Selection of Appropriate Recycling, Treatment, and Disposal
东亚国家废物产生量的估算以及适当回收、处理和处置的选择
- 批准号:
17360258 - 财政年份:2005
- 资助金额:
$ 24.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)