Collaborative Research: Direct Estimation of Topographic Form Drag from Seafloor pressure Measurement

合作研究:通过海底压力测量直接估计地形阻力

基本信息

  • 批准号:
    0751930
  • 负责人:
  • 金额:
    $ 80.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

The importance of topographic form drag to atmospheric circulation has long been recognized. It has been examined in detail via field experiments, laboratory, numerical and theoretical studies. Significantly, it has been directly measured by high-resolution pressure sensors deployed across mountain ranges, the critical topographic elements in the atmosphere. These direct measurements have provided the important link allowing detection/prediction of high drag states from established synoptic weather stations. Mountain drag parameterizations are now incorporated in numerical models of atmospheric circulation. It has been long thought that form drag is important to oceanic flows, as well. In particular, the Antarctic Circumpolar Current may be largely controlled by form drag. Coastal flows in which rapidly-flowing jets or barotropic tidal currents pass over varying topography are prime candidates for developing high drag states. Yet form drag is not incorporated in either global or coastal circulation models. Rather, the effects of unresolved bottom interactions are typically included in the form of quadratic drag laws, despite the fact that during high drag states, bottom friction is known to be a small component of total drag, as has been observed over coastal ocean topographic features. Part of the reason for not recognizing the importance of form drag to ocean circulation has been our inability to clearly document variations in time, space and form of high drag states. In turn this has impeded a first-order understanding of these phenomena. Intellectual Merit: Oceanic time scales are longer and spatial scales shorter than atmospheric. Hence, comprehensive and synoptic measurements of the physical processes leading to form drag in oceanic flows can be more easily obtained. The understanding gained in interpreting these measurements will contribute to our understanding of geophysical high drag flow in general.The investigators have recently demonstrated a new measurement that permits detection of the seafloor pressure signal of nonlinear internal waves and propose to implement this measurement in a manner analogous to surface pressure measurements across mountain ranges to determine the form of high drag states across a small, relatively two-dimensional coastal bump, temporal variability of the total drag and relationship to the large-scale flow; and the effectiveness of employing this measurement at other critical ocean sites. The project will include initial testing of the pressure sensor and a pilot project where moored and intensive profiling measurements will provide synoptic water column density and velocity measurements to supplement those from a seafloor pressure sensor array. From these observations and complementary modeling efforts, Froude number-based parameterizations will be proposed for testing in coastal circulation models. Broader Impact: Mountain drag produces a recognized and critical influence on atmospheric circulation and must be parameterized in global circulation models. Lack of inclusion in ocean circulation models may be an oversight. Identification of its oceanic influence (or lack thereof) seems long overdue. A simple and easily-deployed measurement that will allow long time series of pressure drag at various critical global locations will help to identify its magnitude and variability. Training in state-of-the-art ocean modeling will be provided to a graduate student.
地形阻力对大气环流的重要性早已被人们认识到。通过现场实验、实验室、数值和理论研究对其进行了详细检查。值得注意的是,它是通过部署在山脉(大气中的关键地形要素)上的高分辨率压力传感器直接测量的。这些直接测量提供了重要的链接,允许从已建立的天气站检测/预测高阻力状态。山地阻力参数化现已纳入大气环流数值模型中。 长期以来,人们一直认为形状阻力对于海洋流动也很重要。特别是,南极绕极流可能很大程度上受形状阻力的控制。快速流动的急流或正压潮汐流经过不同地形的海岸流是形成高阻力状态的主要候选者。然而,形状阻力并未纳入全球或沿海环流模型中。相反,未解决的底部相互作用的影响通常以二次阻力定律的形式包含在内,尽管事实上在高阻力状态下,已知底部摩擦力只占总阻力的一小部分,正如在沿海海洋地形特征上观察到的那样。 没有认识到形状阻力对海洋环流的重要性的部分原因是我们无法清楚地记录高阻力状态的时间、空间和形状的变化。反过来,这又阻碍了对这些现象的初步理解。 智力优点:海洋时间尺度比大气更长,空间尺度更短。因此,可以更容易地获得导致海洋流中形成阻力的物理过程的全面和概要测量。在解释这些测量结果中获得的理解将有助于我们对地球物理高阻力流的总体理解。研究人员最近展示了一种新的测量方法,可以检测非线性内波的海底压力信号,并建议以类似的方式实现这种测量跨越山脉的表面压力测量,以确定跨越较小的、相对二维的海岸隆起的高阻力状态的形式、总阻力的时间变化以及与大规模流量的关系;以及在其他关键海洋地点采用这种测量的有效性。该项目将包括压力传感器的初步测试和一个试点项目,其中停泊和密集剖面测量将提供天气水柱密度和速度测量,以补充海底压力传感器阵列的测量结果。根据这些观察结果和补充建模工作,将提出基于弗劳德数的参数化,用于沿海环流模型的测试。 更广泛的影响:山地阻力对大气环流产生公认的关键影响,必须在全球环流模型中参数化。海洋环流模型中缺乏内容可能是一个疏忽。确定其海洋影响(或缺乏影响)似乎早就应该了。一种简单且易于部署的测量方法将允许在全球各个关键位置进行长期压力阻力序列,这将有助于确定其大小和变化性。 将为研究生提供最先进的海洋建模培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Moum其他文献

BLOCKED DRAINPIPES AND SMOKING CHIMNEYS DISCOVERY OF NEW NEAR-INERTIAL WAVE PHENOMENA IN ANTICYCLONES
堵塞的排水管和冒烟的烟囱在反气旋中发现新的近惯性波现象
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leif Thomas;James Moum;Lixin Qu;J. P. Hilditch;Eric Kunze;Luc Rainville;Craig M. Lee;USA. Lixin Qu
  • 通讯作者:
    USA. Lixin Qu
Near-Inertial Energy Variability in a Strong Mesoscale Eddy Field in the Iceland Basin
冰岛盆地强中尺度涡流场中的近惯性能量变率
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Gunnar Voet;A. Waterhouse;Anna C. Savage;Eric Kunze;Jennifer A. MacKinnon;Matthew H. Alford;John Colosi;Harper Simmons;T. Klenz;Samuel Kelly;James Moum;Caitlin B. Whalen;R. Lien;J. Girton
  • 通讯作者:
    J. Girton

James Moum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Moum', 18)}}的其他基金

Collaborative Research: Evaluating mechanisms for enhanced mixing below tropical instability waves
合作研究:评估热带不稳定波下方增强混合的机制
  • 批准号:
    2049145
  • 财政年份:
    2021
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cold Tongue Mixing
合作研究:冷舌混合
  • 批准号:
    2048631
  • 财政年份:
    2021
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Mixing in the Equatorial Atlantic's Cold Tongue- Chipods on PIRATA Moorings
混入赤道大西洋的冷舌——PIRATA 系泊处的 Chipods
  • 批准号:
    1431518
  • 财政年份:
    2014
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
Mixing Across the Pacific Equatorial Cold Tongue
跨越太平洋混搭赤道冷舌
  • 批准号:
    1256620
  • 财政年份:
    2013
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
DYNAmics of the Madden-Julian Oscillation / DYNAMO Subsurface Fluxes
Madden-Julian 振荡动力学 / DYNAMO 地下通量
  • 批准号:
    1059055
  • 财政年份:
    2011
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: DYNAmics of the Madden Julian Oscillation/DYNAMO Mooring
合作研究:Madden Julian Oscillation/DYNAMO Mooring 的动力学
  • 批准号:
    1029265
  • 财政年份:
    2010
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Equatorial Internal Gravity Wave Shear, Strain, Instabilities and Mixing--A Moored Process Study
合作研究:赤道内重力波剪切、应变、不稳定性和混合——停泊过程研究
  • 批准号:
    0728375
  • 财政年份:
    2007
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Small-Scale Processes in the COASTal Ocean
沿海海洋的小规模过程
  • 批准号:
    0549836
  • 财政年份:
    2006
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
Moored Mixing Measurements at the Equator
赤道上的系泊混合测量
  • 批准号:
    0424133
  • 财政年份:
    2004
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Hawaii Ocean Mixing Experiment: Nearfield Program: Abyssal Mixing
夏威夷海洋混合实验:近场计划:深渊混合
  • 批准号:
    9819531
  • 财政年份:
    2001
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

催化烯烃直接硝化的P450过氧化物酶的分子设计与反应机制研究
  • 批准号:
    22307125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高效直接氨固体氧化物燃料电池阳极催化剂的设计制备及反应机制研究
  • 批准号:
    22378069
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多尺度多维度原位研究退役锂离子电池三元正极材料的直接再生机理
  • 批准号:
    22375081
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
环庚三烯酮C-H键选择性直接官能团化及三尖杉萜类天然产物Cephalodiones B-D的不对称全合成研究
  • 批准号:
    22371228
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
AMPK通过直接磷酸化调控NLRP3在抑制NASH进展中的作用和机制研究
  • 批准号:
    82300656
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349884
  • 财政年份:
    2024
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349883
  • 财政年份:
    2024
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2232875
  • 财政年份:
    2023
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2230593
  • 财政年份:
    2023
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了