Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture

合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究

基本信息

项目摘要

Mitigating and removing greenhouse gas emissions such as carbon dioxide (CO2) from the atmosphere is one of today's most pressing grand challenges. One possible approach to address this challenge is through direct air capture technologies (DAC). DAC technologies can extract CO2 directly from the atmosphere to be stored permanently. Traditional methods for separating gaseous mixtures involve either adsorbing high-pressure gases onto a solid surface and releasing (desorbing) them when the pressure is reduced (known as pressure swing adsorption) or using temperature changes to achieve separation (known as temperature swing adsorption). However, these methods are unsuitable for DAC systems because the concentration gradient, which drives the mass transfer of CO2, is very small. As a result, these methods are highly inefficient in terms of energy usage. Additionally, the current state-of-the-art sorbent materials based on amines or ionic liquids require a lot of energy to desorb the CO2 and regenerate the sorbents. Furthermore, since most sorbent materials have low thermal conductivity, externally heating them for regeneration is inefficient and leads to additional heat losses. It is crucial to develop new materials and technologies that can address these drawbacks and enable the successful implementation of large-scale DAC systems. This project will investigate a class of CO2 sorbent materials that can be induced to release the adsorbed CO2 by applying an external magnetic field. The magnetic field generates local heat within the material, so external energy input is not required. The research will yield new insights into the fundamental energy and mass transfer mechanisms in these magnetic field-responsive sorbents (MF-RSs). The project will also provide opportunities for undergraduate student research experiences, curriculum development, and K-12 STEM outreach at the Missouri University of Science & Technology and the University of Southern California.The purpose of this work is to gain a fundamental understanding of energy and mass transfer mechanisms in MF-RSs for use in DAC systems, namely, composites of F3O4 magnetic nanoparticles and microporous metal-organic frameworks (F3O4/MOF-amine) or mesoporous aminosilicates (Fe3O4/SiO2-amine). The external magnetic field generates local heat due to the static hysteresis and dynamic core losses of the magnetic nanoparticles. The adsorbed CO2 is desorbed without external heating, overcoming the issue of low thermal conductivity of most sorbent materials and avoiding the heat losses accompanying externally heated methods. Computational and experimental investigations will be conducted to understand the factors affecting CO2 release and system regeneration in MF-RSs. The intermolecular attractions that result in the low-energy release of CO2 from magnetic sorbents upon exposure to an external magnetic field will be characterized. Specifically, the research will probe the extent of electron transfer perturbation upon magnetic field induction. The study will also elucidate the effects of heat capacity-magnetization tradeoffs on diffusive thermal and molecular transfers. Finally, the magnetic field-triggered CO2 transport mechanisms during sorbent regeneration in the presence of oxygen, nitrogen, and water will be investigated. A host of experimental and computational techniques will be applied to reveal the energy and mass transfer mechanisms of CO2 adsorption and desorption from MF-RSs in the presence of an external magnetic field. These techniques include molecular-level in-situ spectroscopic measurements and transient desorption tests such as electron paramagnetic resonance (EPR) spectroscopy, frequency-domain thermoreflectance (FDTR), zero-length column (ZLC), and magnetic induction swing adsorption (MISA), which will be combined with density-functional theory (DFT) and nanoscale molecular dynamics simulations. The investigation will open new avenues for developing low-energy sorbent regeneration systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
减少和消除大气中二氧化碳 (CO2) 等温室气体排放是当今最紧迫的重大挑战之一。解决这一挑战的一种可能方法是通过直接空气捕获技术 (DAC)。 DAC 技术可以直接从大气中提取二氧化碳并永久储存。分离气体混合物的传统方法包括将高压气体吸附到固体表面上并在压力降低时释放(解吸)它们(称为变压吸附)或利用温度变化实现分离(称为变温吸附)。然而,这些方法不适合 DAC 系统,因为驱动 CO2 传质的浓度梯度非常小。因此,这些方法在能源使用方面效率非常低。此外,目前最先进的基于胺或离子液体的吸附剂材料需要大量能量来解吸二氧化碳并再生吸附剂。此外,由于大多数吸附剂材料的导热率较低,因此外部加热它们进行再生的效率低下,并导致额外的热损失。开发能够解决这些缺陷并成功实施大规模 DAC 系统的新材料和技术至关重要。该项目将研究一类二氧化碳吸附剂材料,可以通过施加外部磁场来诱导释放所吸附的二氧化碳。磁场在材料内产生局部热量,因此不需要外部能量输入。该研究将对这些磁场响应吸附剂(MF-RS)的基本能量和质量传递机制产生新的见解。该项目还将为密苏里科技大学和南加州大学的本科生提供研究经验、课程开发和 K-12 STEM 推广的机会。这项工作的目的是获得对能源和能源的基本了解。用于 DAC 系统的 MF-RS 中的传质机制,即 F3O4 磁性纳米粒子和微孔金属有机框架(F3O4/MOF-胺)或介孔氨基硅酸盐的复合材料(Fe3O4/SiO2-胺)。由于磁性纳米颗粒的静态磁滞和动态磁芯损耗,外部磁场会产生局部热量。吸附的CO2无需外部加热即可解吸,克服了大多数吸附剂材料导热系数低的问题,避免了外部加热方法带来的热损失。将进行计算和实验研究,以了解影响 MF-RS 中二氧化碳释放和系统再生的因素。将表征暴露于外部磁场时导致磁性吸附剂低能量释放二氧化碳的分子间吸引力。具体来说,该研究将探讨磁场感应下电子转移扰动的程度。该研究还将阐明热容-磁化强度权衡对扩散热和分子传递的影响。最后,将研究在氧气、氮气和水存在的情况下吸附剂再生过程中磁场触发的二氧化碳传输机制。将应用大量实验和计算技术来揭示在外部磁场存在下 MF-RS 吸附和解吸 CO2 的能量和质量传递机制。这些技术包括分子级原位光谱测量和瞬态解吸测试,例如电子顺磁共振(EPR)光谱、频域热反射(FDTR)、零长度柱(ZLC)和磁感应变速吸附(MISA),它将与密度泛函理论(DFT)和纳米级分子动力学模拟相结合。该调查将为开发低能量吸附剂再生系统开辟新途径。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fateme Rezaei其他文献

Determination of binary CO2/H2 adsorption isotherms and kinetics over porous organic cage CC3 via zero-length column technique
通过零长度柱技术测定多孔有机笼 CC3 上的二元 CO2/H2 吸附等温线和动力学
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    J. D. L. Moreno;Kyle Newport;A. Rownaghi;Fateme Rezaei
  • 通讯作者:
    Fateme Rezaei
Performance of MIL-101(Cr) and MIL-101(Cr)-Pore Expanded as Drug Carriers for Ibuprofen and 5-Fluorouracil Delivery.
MIL-101(Cr) 和 MIL-101(Cr) 孔扩展作为布洛芬和 5-氟尿嘧啶输送的药物载体的性能。
  • DOI:
    10.1021/acsabm.3c01007
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Neila Pederneira;Peter O. Aina;A. Rownaghi;Fateme Rezaei
  • 通讯作者:
    Fateme Rezaei
Impact of Spiritual End-of-Life Support on the Quality of Life for Leukemia Patients
临终精神支持对白血病患者生活质量的影响
  • DOI:
    10.18502/ijps.v19i1.14346
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Narges Yaghoobi Beglar;Fateme Rezaei;Ehsan Izadipour;Seyyed Mahmood TabaTabaei
  • 通讯作者:
    Seyyed Mahmood TabaTabaei
Assessing Hydrolysis Performance of Ce(OH)4@PIM-1 Composites Functionalized with Amidoxime, Aldoxime, and Carboxylate Groups Toward Dimethyl 4-Nitrophenylphosphonate, a Nerve Agent Simulant
评估用偕胺肟、醛肟和羧酸酯基团功能化的 Ce(OH)4@PIM-1 复合材料对神经毒剂模拟物 4-硝基苯基膦酸二甲酯的水解性能
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Peter O. Aina;Sukanta K. Mondal;A. Rownaghi;Fateme Rezaei
  • 通讯作者:
    Fateme Rezaei

Fateme Rezaei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fateme Rezaei', 18)}}的其他基金

ECO-CBET: GOALI: CAS-Climate: Expediting Decarbonization of Cement Industry through Integration of CO2 Capture and Conversion
ECO-CBET:目标:CAS-气候:通过整合二氧化碳捕获和转化加速水泥行业脱碳
  • 批准号:
    2219086
  • 财政年份:
    2023
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Continuing Grant
MRI: Track 1 Acquisition of Dynamic Mixed Gas Sorption Analyzer-Mass Spectrometer to Enable Advanced Separation, Sensing, and Catalysis Research
MRI:轨道 1 采购动态混合气体吸附分析仪-质谱仪以实现先进的分离、传感和催化研究
  • 批准号:
    2320315
  • 财政年份:
    2023
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Standard Grant
PFI-RP: Low-Pressure Storage and Separation of Carbon Dioxide and Methane in Biogas to Enable the Use of Renewable Sources
PFI-RP:低压储存和分离沼气中的二氧化碳和甲烷,以实现可再生能源的使用
  • 批准号:
    2044726
  • 财政年份:
    2021
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Standard Grant
Combined Capture and Reaction in Temperature Swing Adsorption: An Integrated Approach toward VOC Emissions Control
变温吸附中的组合捕获和反应:VOC 排放控制的综合方法
  • 批准号:
    1802049
  • 财政年份:
    2018
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Standard Grant
EAGER: Advanced Buffer Materials for CO2 Control, Improved Air Quality and Energy Conservation in Commercial Buildings
EAGER:用于二氧化碳控制、改善空气质量和商业建筑节能的先进缓冲材料
  • 批准号:
    1549736
  • 财政年份:
    2015
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Standard Grant

相似国自然基金

多元调查数据中统计关联模式的潜变量与图建模研究
  • 批准号:
    12301373
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于复杂抽样和时空效应下卫生服务调查数据的小域估计方法研究
  • 批准号:
    82304238
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向重大灾情精准调查的随机无人机路径规划问题研究
  • 批准号:
    72304049
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
海南省儿童急性呼吸道感染病原的分子流行病学调查及基于数学模型的流行特点研究
  • 批准号:
    82360658
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
粮食产后前端损失调查评估方法与指标体系研究
  • 批准号:
    72241013
  • 批准年份:
    2022
  • 资助金额:
    20 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333102
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
  • 批准号:
    2331199
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Standard Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
  • 批准号:
    2331200
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402729
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了