Collective Hydrodynamics of Swimming Bacteria: A Living Fluid

游动细菌的集体流体动力学:一种活体液体

基本信息

  • 批准号:
    0730579
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

National Science Foundation - Division of Chemical &Transport Systems ? Particulate & Multiphase Processes Program (1415)Proposal Number: 0730579 Principal Investigators: Koch, Donald Affiliation: Cornell University Proposal Title: Collective Hydrodynamics of Swimming Bacteria: A Living Fluid Suspensions of swimming micro-organisms such as the bacterium E. coli constitute a unique type of non-Newtonian fluid that can exhibit a negative-viscosity instability, enhanced mixing by secondary flows resulting from a negative first normal stress difference, break up due to concentration-gradient-induced stresses, and migration phenomena that facilitate novel separation methods. While the physical mechanism by which a single bacterium swims, pushing itself through the fluid with a flagella bundle that turns like a screw, is well understood, the equations of motion governing a suspension of bacteria have not been derived previously. In the proposed study, we will derive these equations starting from a fundamental description of bacteria-fluid interactions, solve the equations for several representative flows, and observe these flows experimentally. Intellectual Merit: A bacteria cell exerts a drag force on the fluid while its flagella exert an equal and opposite force, leading to a force dipole which on average creates a pressure in the direction of mean cell orientation. This situation may be contrasted with a stretched polymer which exerts a tension in the direction of its orientation. In a weak shear flow, a bacterium orients with the extensional axis of the flow and reinforces the extensional motion. Thus, above a critical cell concentration, the suspension has a negative viscosity and a quiescent suspension will be unstable to the formation of spontaneous fluid motion. We believe that this instability explains previous experimental observations of vortical motions in systems of swimming bacteria. We plan to use particle tracking of both bacteria and passive colloidal particles to probe this instability. The alignment of bacteria along streamlines in a strong shear flow will create a negative first normal stress difference (or streamline pressure) in contrast to the positive first normal stress difference (or streamline tension) for polymer solutions. Both non-Newtonian fluids can enhance mixing due to secondary flows caused by streamline curvature in a curved microfluidic channel, but, as we shall confirm, the vortices will be centered on the inside of a channel bend for bacteria and on the outside for a polymer solution. Broader Impacts: The applications of our studies include a novel method to separate bacteria based on their chemotactic behavior, a new ?active? fluid for micro-fluidic mixing whose activity can be modulated by biochemical inputs, and insights into the manner in which cells disperse or collect themselves into clusters as they respond to biochemical cues. People have a natural curiosity about the collective behavior of living things. Our studies which link such collective behaviors to the principles of momentum and mass transport and kinetic theory descriptions of suspensions will provide a means to engage and inspire students to think about connections between biology and engineering. We will exploit these opportunities in our undergraduate and graduate curricula and in the Nanobiotechnology Center's outreach program for high school teachers.
国家科学基金会 - 化学与运输系统部门?颗粒与多相过程计划 (1415) 提案编号:0730579 主要研究员:Koch, Donald 隶属关系:康奈尔大学 提案标题:游动细菌的集体流体动力学:活体流体 游动微生物(例如大肠杆菌)的悬浮液构成了独特的一种非牛顿流体,可以表现出负粘度不稳定性,通过二次流增强混合负第一法向应力差、由于浓度梯度引起的应力而破裂以及促进新颖分离方法的迁移现象。虽然单个细菌游泳的物理机制(通过像螺丝一样旋转的鞭毛束推动自身穿过液体)已被很好地理解,但控制细菌悬浮液的运动方程之前尚未导出。在拟议的研究中,我们将从细菌-流体相互作用的基本描述开始推导这些方程,求解几个代表性流动的方程,并通过实验观察这些流动。智力优点:细菌细胞对流体施加拖曳力,而其鞭毛则施加相等且相反的力,从而产生力偶极子,该力偶极子平均在平均细胞方向上产生压力。这种情况可以与在其取向方向上施加张力的拉伸聚合物形成对比。在弱剪切流中,细菌沿着流的延伸轴定向并增强延伸运动。因此,在临界细胞浓度之上,悬浮液具有负粘度并且静止悬浮液对于自发流体运动的形成将不稳定。我们相信这种不稳定性解释了之前对游动细菌系统中涡旋运动的实验观察。我们计划使用细菌和被动胶体粒子的粒子追踪来探测这种不稳定性。细菌在强剪切流中沿着流线排列将产生负的第一法向应力差(或流线压力),这与聚合物溶液的正的第一法向应力差(或流线张力)相反。由于弯曲微流体通道中的流线曲率引起的二次流动,两种非牛顿流体都可以增强混合,但是,正如我们将确认的那样,对于细菌来说,涡流将集中在通道弯曲的内部,而对于聚合物来说,涡流将集中在通道弯曲的外部。解决方案。更广泛的影响:我们研究的应用包括一种根据细菌的趋化行为(一种新的“活性”)分离细菌的新方法。用于微流体混合的流体,其活动可以通过生化输入进行调节,并深入了解细胞在响应生化信号时分散或聚集成簇的方式。人们对生物的集体行为有着天生的好奇心。我们的研究将这种集体行为与动量和质量传递原理以及悬浮的动力学理论描述联系起来,将提供一种方法来吸引和启发学生思考生物学和工程学之间的联系。我们将在本科生和研究生课程以及纳米生物技术中心针对高中教师的外展计划中利用这些机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Koch其他文献

Donald Koch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Koch', 18)}}的其他基金

Slender body theory and finite difference computations to characterize particle-fluid interactions at moderate Reynolds numbers
细长体理论和有限差分计算来表征中等雷诺数下的颗粒-流体相互作用
  • 批准号:
    2206851
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
The Effect of Particle-polymer Interactions on the Rheology and Structure of Dilute Particle-filled Polymeric Liquids
颗粒-聚合物相互作用对稀颗粒填充聚合物液体流变学和结构的影响
  • 批准号:
    1803156
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
UNS: Employing hydrodynamic lift and particle trajectory ratcheting to achieve sieve-free separations based on size and shape in cross-flow filtration
UNS:利用流体动力升力和颗粒轨迹棘轮,在错流过滤中根据尺寸和形状实现无筛分离
  • 批准号:
    1505795
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Using shape to control the orientations and positions of particles in processing flows
使用形状来控制处理流程中颗粒的方向和位置
  • 批准号:
    1435013
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: The role of microphysical processes and turbulence intermittency in droplet coalescence in warm cumulus clouds
合作研究:微物理过程和湍流间歇性在暖积云中液滴合并中的作用
  • 批准号:
    1435953
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Hydrodynamic instabilities and flow modification caused by preferential concentration of inertial particles
惯性颗粒优先集中引起的水动力不稳定性和流动改变
  • 批准号:
    1233793
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Hydrodynamically Assisted Bacterial Chemotaxis
流体动力学辅助细菌趋化作用
  • 批准号:
    1066193
  • 财政年份:
    2011
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
The Effects of Fluid-Particle and Particle-Particle Interactions on the Structure and Flow Properties of Suspensions of Fibers and Disks
流体-颗粒和颗粒-颗粒相互作用对纤维和圆盘悬浮液结构和流动性能的影响
  • 批准号:
    0332902
  • 财政年份:
    2004
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Nonlinear-Flow-Induced Structure in Fiber Suspensions
纤维悬浮液中的非线性流动诱导结构
  • 批准号:
    9910908
  • 财政年份:
    2000
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Fluid Flow, Pressure Drop, and Heat and Mass Transfer in Packed Beds at Moderate Reynolds Numbers
中等雷诺数下填充床中的流体流动、压降以及传热传质
  • 批准号:
    9526149
  • 财政年份:
    1996
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant

相似国自然基金

强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
  • 批准号:
    12361074
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
基于菌毛可视化技术研究菌毛在蓝细菌聚球藻PCC7942水中沉浮过程中的流体动力学效应及其调控机制
  • 批准号:
    12374206
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
变密度电流体动力学模型的高效有限元方法
  • 批准号:
    12371372
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
相对论Boltzmann方程的牛顿极限与流体动力学极限
  • 批准号:
    12361045
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
相对论流体动力学系统阴影波解的适定性
  • 批准号:
    12361048
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Understanding swimming hydrodynamics of elastic propulsors with tapered thickness
了解具有锥形厚度的弹性推进器的游泳流体动力学
  • 批准号:
    2217647
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Development of a highly accurate prediction and control technique for sperm population swimming by hydrodynamics
利用流体动力学开发精子种群游动的高精度预测和控制技术
  • 批准号:
    18K18354
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Designing effective fish-friendly waterway culverts: integration of hydrodynamics and swimming performance
设计有效的鱼类友好型水道涵洞:水动力和游泳性能的结合
  • 批准号:
    LP140100225
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Linkage Projects
A practical application of the real-time evaluation system for the swimming techniques
游泳技术实时评价系统的实际应用
  • 批准号:
    13480007
  • 财政年份:
    2001
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hydrodynamics of Swimming of Unicellular Organisms
单细胞生物游泳的流体动力学
  • 批准号:
    64B1589
  • 财政年份:
    1964
  • 资助金额:
    $ 24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了