The Effects of Fluid-Particle and Particle-Particle Interactions on the Structure and Flow Properties of Suspensions of Fibers and Disks
流体-颗粒和颗粒-颗粒相互作用对纤维和圆盘悬浮液结构和流动性能的影响
基本信息
- 批准号:0332902
- 负责人:
- 金额:$ 27.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-04-01 至 2008-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractCTS-0332902D. Koch, Cornell UniversityIntellectual Merit: A major challenge for the scientific understanding and engineering design of structured materials and complex fluids is to determine the effects of fluid flow on the structure and properties of non-spherical-particle suspensions. A balanced approach of analytical theory, computer simulation and experiment will be applied to two problems on the forefront of this topic: (a) The orientation of slender fibers in high Reynolds number laminar and turbulent flows; and (b) The effects of fluid-mediated particle-particle interactions on the structure and rheology of suspensions of disks. While detailed theoretical models and careful experimental measurements are available for the flow-induced structure in fiber suspensions in viscous fluids, relatively little is known about the rotation of fibers when fluid inertia is important on the fibers length scale. More generally, the proper description of particle-fluid interactions for particles whose size is comparable to or larger than the size of the smallest eddies of a turbulent flow constitutes the most important current challenge in the description of particle-laden turbulent flows. In the proposed project, a novel simulation method will be developed that couples a slender-body description of the force distribution along a fiber with a spectral solution of the Navier-Stokes equations to describe particle-fluid interactions in a turbulent flow when the fiber length is comparable with the size of the eddies of the turbulent flow and inertia influences the fluid velocity disturbances produced by the fiber. This model will be applied to predict the turbulence-induced dispersion of fiber positions and orientations and the rate of sedimentation of fibers in turbulent flows. The most basic question concerning the motion of fibers at finite Reynolds number is how a fiber will rotate in a moderate Reynolds number simple shear flow. In the PIs current NSF sponsored research, analytical predictions have been obtained indicating that inertial effects cause a fibers orientation to drift toward the vorticity axis of a simple shear flow. The proposed study includes an experimental investigation of the motion of single fibers in a Couette cell to validate the predictions for the direction and rate of migration of fiber orientation. The proposed project will also extend the experimental and analytical approaches used to study fluid-mediated fiber-fiber interactions to understand the nature of such interactions in materials filled with disk-shaped particles. Microlithography methods will be used to produce model systems of rigid disks suitable for studies of the rheology and flow-induced orientation of disks in Newtonian fluids over a range of particle concentrations. This experimental study will be complemented by a theoretical analysis of disk-disk interactions to predict the effects of hydrodynamic interactions on the orientation distribution and rheology of the disk suspensions. Broader Impacts: High-aspect ratio fibers and disks are commonly used to enhance the mechanical, thermal and electrical properties of polymeric materials. These properties are highly sensitive to the structure induced by fluid flow when the materials are processed in the molten state. At the present time, commercial software based on the rotation of fibers in a low Reynolds number Newtonian fluid with a rotary diffusion to describe fiber-fiber interactions is widely used to predict structure in fiber composites. The experimental and theoretical studies of the effects of disk-disk interactions on disk orientation will provide the first step toward developing engineering models for the flow-induced structure in polymeric materials filled with platelet shaped particles such as mica flakes and silica clay particles. During the production of paper, pulp fibers suspended in water flow onto a porous conveyer belt to form a fiber network. It is desirable to use a turbulent fluid flow to disperse the fibers uniformly in space with isotropic orientations. In these flows, the Reynolds number based on the fiber length is O (10). The simulation method developed in this project will provide the first rigorous description of fiber motion under these conditions. The project will train a doctoral student and undergraduate researchers with the ability to interface analytical approaches with computer simulation and validate their models experimentally.
Abstractcts-0332902d。 Koch,Cornell UniversityIntellectual的优点:对结构化材料和复杂流体的科学理解和工程设计的主要挑战是确定流体流对非球形粒子悬浮液的结构和特性的影响。 分析理论,计算机模拟和实验的平衡方法将应用于该主题最前沿的两个问题:(a)高雷诺数层层层层层状和湍流中细长纤维的方向; (b)流体介导的颗粒粒子相互作用对磁盘悬浮液的结构和流变的影响。 虽然详细的理论模型和仔细的实验测量可用于粘性流体中纤维悬浮液的流动结构,但对于纤维惯性在纤维长度上很重要时,纤维旋转相对较少。 更笼统地说,对粒子的颗粒相互作用的正确描述与粒子相当或大于湍流的最小涡流的大小是构成粒子含量湍流流的描述中最重要的当前挑战。 在拟议的项目中,将开发一种新型的仿真方法,该方法将沿着纤维的力分布的细长描述与Navier-Stokes方程的光谱溶液沿着纤维溶液相结合,以描述纤维长度时湍流中的粒子流体相互作用与湍流和惯性的涡流的大小相当,会影响纤维产生的流体速度干扰。 该模型将应用于预测纤维位置和方向的湍流诱导的分散体以及湍流中纤维沉积的速率。 关于有限雷诺数在有限的雷诺数下运动的最基本问题是,纤维将如何在中等雷诺数中旋转简单剪切流。 在PIS当前NSF赞助的研究中,已经获得了分析预测,表明惯性效应会导致纤维取向向简单剪切流的涡度轴漂移。 拟议的研究包括对COUETTE细胞中单纤维运动的运动,以验证纤维取向迁移的方向和速率的预测。 拟议的项目还将扩展用于研究流体介导的纤维纤维相互作用的实验和分析方法,以了解填充有盘形颗粒的材料中这种相互作用的性质。 微观造影方法将用于生成刚性磁盘的模型系统,适用于牛顿流体在一系列颗粒浓度上的流变学和流动诱导的磁盘方向。 这项实验研究将通过对磁盘盘相互作用的理论分析来补充,以预测流体动力相互作用对磁盘悬浮液的方向分布和流变学的影响。更广泛的影响:高空纤维纤维和磁盘通常用于增强聚合物材料的机械,热和电性能。 当材料以熔融状态处理时,这些特性对流体流量引起的结构高度敏感。 目前,基于低雷诺数中纤维旋转的商业软件具有旋转扩散的牛顿流体,以描述纤维纤维相互作用,可广泛用于预测纤维复合材料中的结构。 关于磁盘相互作用对磁盘方向的影响的实验和理论研究将为开发用于流动诱导的结构的工程模型的第一步,以填充有血小板形颗粒的聚合物材料,例如云母片和硅胶粘土颗粒。 在生产纸过程中,悬浮在水流到多孔输送带的纸浆纤维形成纤维网络。 希望使用湍流流以各向同性方向将纤维均匀地分散在太空中。 在这些流中,基于光纤长度的雷诺数为O(10)。 该项目中开发的仿真方法将在这些条件下对纤维运动的第一个严格描述。 该项目将培训博士生和本科研究人员,能够通过计算机模拟进行分析方法并通过实验验证其模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Koch其他文献
Donald Koch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Koch', 18)}}的其他基金
Slender body theory and finite difference computations to characterize particle-fluid interactions at moderate Reynolds numbers
细长体理论和有限差分计算来表征中等雷诺数下的颗粒-流体相互作用
- 批准号:
2206851 - 财政年份:2022
- 资助金额:
$ 27.95万 - 项目类别:
Standard Grant
The Effect of Particle-polymer Interactions on the Rheology and Structure of Dilute Particle-filled Polymeric Liquids
颗粒-聚合物相互作用对稀颗粒填充聚合物液体流变学和结构的影响
- 批准号:
1803156 - 财政年份:2018
- 资助金额:
$ 27.95万 - 项目类别:
Standard Grant
UNS: Employing hydrodynamic lift and particle trajectory ratcheting to achieve sieve-free separations based on size and shape in cross-flow filtration
UNS:利用流体动力升力和颗粒轨迹棘轮,在错流过滤中根据尺寸和形状实现无筛分离
- 批准号:
1505795 - 财政年份:2015
- 资助金额:
$ 27.95万 - 项目类别:
Standard Grant
Using shape to control the orientations and positions of particles in processing flows
使用形状来控制处理流程中颗粒的方向和位置
- 批准号:
1435013 - 财政年份:2014
- 资助金额:
$ 27.95万 - 项目类别:
Standard Grant
Collaborative Research: The role of microphysical processes and turbulence intermittency in droplet coalescence in warm cumulus clouds
合作研究:微物理过程和湍流间歇性在暖积云中液滴合并中的作用
- 批准号:
1435953 - 财政年份:2014
- 资助金额:
$ 27.95万 - 项目类别:
Standard Grant
Hydrodynamic instabilities and flow modification caused by preferential concentration of inertial particles
惯性颗粒优先集中引起的水动力不稳定性和流动改变
- 批准号:
1233793 - 财政年份:2012
- 资助金额:
$ 27.95万 - 项目类别:
Standard Grant
Hydrodynamically Assisted Bacterial Chemotaxis
流体动力学辅助细菌趋化作用
- 批准号:
1066193 - 财政年份:2011
- 资助金额:
$ 27.95万 - 项目类别:
Standard Grant
Collective Hydrodynamics of Swimming Bacteria: A Living Fluid
游动细菌的集体流体动力学:一种活体液体
- 批准号:
0730579 - 财政年份:2007
- 资助金额:
$ 27.95万 - 项目类别:
Continuing Grant
Nonlinear-Flow-Induced Structure in Fiber Suspensions
纤维悬浮液中的非线性流动诱导结构
- 批准号:
9910908 - 财政年份:2000
- 资助金额:
$ 27.95万 - 项目类别:
Continuing Grant
Fluid Flow, Pressure Drop, and Heat and Mass Transfer in Packed Beds at Moderate Reynolds Numbers
中等雷诺数下填充床中的流体流动、压降以及传热传质
- 批准号:
9526149 - 财政年份:1996
- 资助金额:
$ 27.95万 - 项目类别:
Continuing Grant
相似国自然基金
级联信号放大纳米质谱探针集的构建及其超灵敏定量检测体液中痕量活性致病菌的临床研究
- 批准号:22304085
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
系统性探究特定肠道共生菌株参与体液免疫起点塑造及机制
- 批准号:32370936
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
磷酸盐流体液-液相分离作用实验研究:对前生命化学“磷酸盐问题”的启示
- 批准号:42303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂流体液液两相流微化工的放大机制及界面效应
- 批准号:22378295
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于维吾尔医学“体液学说”研究复方木尼孜其颗粒通过纠正B细胞—Th17细胞间失控的“交叉对话”改善SLE的作用机制
- 批准号:82360858
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Glymphatic impairment as a crucial factor in particulate matter exposure related development of Alzheimer's disease pathology
类淋巴系统损伤是与颗粒物暴露相关的阿尔茨海默病病理学发展的关键因素
- 批准号:
10718104 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Synergistic Effects of Stress and Traffic-Related Air Pollution on Cardiovascular Health
压力和交通相关空气污染对心血管健康的协同效应
- 批准号:
10560427 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Cardiovascular effects of oral bicarbonate in CKD
口服碳酸氢盐对 CKD 的心血管作用
- 批准号:
10464574 - 财政年份:2022
- 资助金额:
$ 27.95万 - 项目类别:
Regulation, function, and the therapeutic potential of an oncogenic long noncoding RNA lnc-HLX-2-7 in group 3 medulloblastomas
致癌长链非编码 RNA lnc-HLX-2-7 在第 3 组髓母细胞瘤中的调节、功能和治疗潜力
- 批准号:
10661070 - 财政年份:2022
- 资助金额:
$ 27.95万 - 项目类别:
Induction Effects of Mesoporous Silica Nanoparticles on Vaccine Immunity
介孔二氧化硅纳米粒子对疫苗免疫的诱导作用
- 批准号:
22K12831 - 财政年份:2022
- 资助金额:
$ 27.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)