Magnetic Field Directed Self-Assembly of Conjugated Rod-Coil Block Copolymers

共轭棒-线圈嵌段共聚物的磁场定向自组装

基本信息

  • 批准号:
    0730062
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Proposal Number: CBET- 0730062Principal Investigator: Travis S. BaileyUniversity/Institution: Colorado St. University Title: Magnetic Field Directed Self-Assembly of Conjugated Rod-Coil Block Copolymers The research concerns the effects of variable magnitude magnetic field (0 9.4 Tesla) on the self-assembled morphology and domain orientation of conjugated rod-coil block copolymers (RC BCPs) in both bulk phase and thin film environments. The designed research activities include both theoretical 3-D self-consistent field calculations and rigorous experimental analysis of synthetically derived systems based on poly(3-hexylthiophene) (P3HT) and poly(phenylene vinylene) (PPV) derivatives, and are the product of a collaborative effort among three CSU faculty (Bailey, Wang, Meersman). The anticipated success of the proposal is based on the established experience of Profs. Bailey and Wang with block copolymer self-assembly, and the expertise of Prof. Meersman with high magnetic field instrumentation. Intellectual Merit. Mounting evidence continues to highlight the critical importance of controlled nanoscale structure on the performance efficiency of conjugated polymer-based optoelectronic devices, such as LEDs, solar cells, and chemical and biological sensors. Exploiting the self-assembly of BCPs to generate nanoscale structure has long been recognized as a promising alternative to high cost lithographic processes. However, incorporation of rod-like conjugated polymers as constituent blocks in a BCP has been shown to have severe consequences on the phase behavior of such systems, the comprehensive nature of which has remained poorly understood due to limited synthetic access to such materials. However, on the heels of recent synthetic breakthroughs opening practical access to conjugated BCPs based on P3HT and PPV derivatives, the systematic unraveling of the phase behavior of these RC BCPs has now become viable. Our proposed investigations are based on a collaborative use of both theoretical and experimental analysis to strategically elucidate the rich complexity of behavior in these systems, and more importantly, probe the potential of strong magnetic fields as processing tools to maximize domain alignment and minimize defect densities in this important class of soft materials. Broader Impact. The scope of knowledge generated from these critically fundamental studies on the behavior of conjugated RC BCPs in the presence of strong magnetic fields will have direct and broad implications towards their integration into a range of technologically important application areas, including the fabrication of polymer-based photovoltaic cells, LEDs, chemical and biological sensors and field effect transistors. The interdisciplinary team of researchers assembled in this collaborative proposal (Bailey, Wang, and Meersman) represents two departments and two colleges at Colorado State University. The scope of work has been designed to capitalize on our strengths in synthetic and physical polymer chemistry, computational physics, and instrumentation for magnetic field generation. Thus, the collaboration between departments will strengthen and enhance the campus-wide infrastructure for future cross-cutting research-based graduate education. Modifications of existing superconducting magnets and design of inert gas sample chambers compatible with these magnets will provide lasting capabilities for the general study of magnetic field effects on structure in materials beyond those associated with this study. The results of the research activities will be integrated with our educational and diversity goals through a range of programs. These include regularly scheduled graduate and undergraduate level seminar series, special topics sections in our two polymer science courses, active undergraduate research programs, and a developing workshop series for regional (Colorado and Wyoming) high school science teachers on recent topics in nanotechnology, biotechnology, and biomaterials. Each of these programs actively focuses on maximizing participation of minority and underrepresented groups in the sciences, through close ties with CSU's outstanding diversity programs, including the Colorado PEAKS Alliance for Graduate Education and Professoriate Program (AGEP), the Louis Stokes Colorado Alliance for Minority Participation (LS CO-AMP), the Women and Minorities in Engineering Program (WMEP), as well as our student chapter of Society for Women in Engineering (SWE).
提案编号:CBET- 0730062 首席研究员:Travis S. Bailey 大学/机构:科罗拉多圣大学 标题:共轭棒-线圈嵌段共聚物的磁场定向自组装 该研究涉及可变强度磁场(0 9.4 特斯拉)对共轭棒-线圈嵌段共聚物(RC BCP)在体相和薄相中的自组装形态和域取向电影环境。设计的研究活动包括基于聚(3-己基噻吩)(P3HT)和聚(苯乙撑乙烯)(PPV)衍生物的合成系统的理论3D自洽场计算和严格的实验分析,并且是这是科罗拉多州立大学三位教员(Bailey、Wang、Meersman)的共同努力。该提案的预期成功基于教授的既定经验。 Bailey 和 Wang 拥有嵌段共聚物自组装技术,Meersman 教授拥有高磁场仪器方面的专业知识。智力优点。越来越多的证据不断强调受控纳米结构对于基于共轭聚合物的光电器件(例如 LED、太阳能电池以及化学和生物传感器)的性能效率至关重要。利用 BCP 自组装来生成纳米级结构长期以来一直被认为是高成本光刻工艺的一种有前途的替代方案。然而,在 BCP 中加入棒状共轭聚合物作为组成嵌段已被证明会对此类系统的相行为产生严重影响,由于此类材料的合成途径有限,其综合性质仍知之甚少。然而,随着最近的合成突破开启了基于 P3HT 和 PPV 衍生物的共轭 BCP 的实用途径,系统地揭示这些 RC BCP 的相行为现已变得可行。我们提出的研究基于理论和实验分析的协作使用,以战略性地阐明这些系统中行为的丰富复杂性,更重要的是,探讨强磁场作为处理工具的潜力,以最大限度地提高磁域对准并最大限度地减少缺陷密度这一类重要的软材料。更广泛的影响。这些关于共轭 RC BCP 在强磁场下的行为的关键基础研究所产生的知识范围,将对它们集成到一系列技术重要的应用领域(包括聚合物基光伏发电的制造)产生直接和广泛的影响。电池、LED、化学和生物传感器以及场效应晶体管。本合作提案中聚集的跨学科研究团队(Bailey、Wang 和 Meersman)代表了科罗拉多州立大学的两个系和两个学院。工作范围旨在利用我们在合成和物理聚合物化学、计算物理和磁场生成仪器方面的优势。因此,部门之间的合作将加强和改善未来跨领域研究型研究生教育的校园基础设施。对现有超导磁体的修改以及与这些磁体兼容的惰性气体样品室的设计将为磁场对材料结构影响的一般研究提供持久的能力,超出与本研究相关的范围。研究活动的结果将通过一系列计划与我们的教育和多元化目标相结合。其中包括定期安排的研究生和本科生水平研讨会系列、我们两门聚合物科学课程中的专题部分、活跃的本科生研究计划以及为地区(科罗拉多州和怀俄明州)高中科学教师举办的关于纳米技术、生物技术、和生物材料。这些项目中的每一个都通过与科罗拉多州立大学杰出的多元化项目的密切联系,积极致力于最大限度地提高少数族裔和代表性不足群体对科学的参与,包括科罗拉多州 PEAKS 研究生教育和教授计划联盟 (AGEP)、路易斯斯托克斯科罗拉多州少数族裔参与联盟(LS CO-AMP)、妇女和少数族裔工程项目 (WMEP) 以及我们的工程妇女协会 (SWE) 学生分会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Travis Bailey其他文献

Travis Bailey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Travis Bailey', 18)}}的其他基金

I-Corps: Translation Potential of an Elastomeric Low-Friction Fluoropolymer Alternative for the Medical Device Industry
I-Corps:医疗器械行业弹性体低摩擦含氟聚合物替代品的转化潜力
  • 批准号:
    2406968
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Open Access Shared-Use MALDI-TOF/TOF Mass Spectrometer
MRI:购买开放共享的 MALDI-TOF/TOF 质谱仪
  • 批准号:
    2117934
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Fighting Fatigue and Fracture with Morphologically Tuned Energy Dissipation in Highly Swollen Elastomer Networks
在高度膨胀的弹性体网络中通过形态调整能量耗散来对抗疲劳和断裂
  • 批准号:
    1808824
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Routes to UV Activated Fouling Reversal and Molecular Weight Cutoff Control in Tethered Micelle Ultrafiltration Membrane Assemblies
系留胶束超滤膜组件中紫外线激活污垢逆转和分子量截留控制的途径
  • 批准号:
    1160026
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Acquisition of Integrated Small and Wide Angle X-ray Scattering Instrumentation for the Rocky Mountain Region
MRI:为落基山脉地区采购集成小角度和广角 X 射线散射仪器
  • 批准号:
    0821799
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Integration of Sophisticated Stimuli-Response Capabilities into Highly-Distensible Nanostructured Hydrogels
职业:将复杂的刺激响应能力集成到高可扩展的纳米结构水凝胶中
  • 批准号:
    0645781
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

液化场地桩基桥台地震灾变机理与简化分析模型研究
  • 批准号:
    52378183
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
考虑多相多介质耦合作用的地下水位变化场地非线性地震响应机理研究
  • 批准号:
    52378474
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于CPTU原位测试的污染场地土-膨润土隔离墙工程特性评价及防渗性能辨识研究
  • 批准号:
    42302320
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多源不确定性因素影响下场地地下水污染监测网优化问题研究
  • 批准号:
    42372279
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
融合桩基弯曲与屈曲的液化场地高桩码头抗震韧性评估与设计方法
  • 批准号:
    52378331
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Emergent Technology for Studying the Structure/Function Relationship of Enzymes Using Electron Paramagnetic Resonance
利用电子顺磁共振研究酶结构/功能关系的新兴技术
  • 批准号:
    10630488
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Advanced Infrared Biology of Protein Structure & Dynamics
蛋白质结构的高级红外生物学
  • 批准号:
    10360289
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
The Neuroscience of Obesity: Developing Executive Control, Neural Processes, and Obesity Risk
肥胖的神经科学:发展执行控制、神经过程和肥胖风险
  • 批准号:
    10155082
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
The Neuroscience of Obesity: Developing Executive Control, Neural Processes, and Obesity Risk
肥胖的神经科学:发展执行控制、神经过程和肥胖风险
  • 批准号:
    10364764
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Neural Mechanisms for Feature-Based Attention
基于特征的注意力的神经机制
  • 批准号:
    10540709
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了