Fighting Fatigue and Fracture with Morphologically Tuned Energy Dissipation in Highly Swollen Elastomer Networks
在高度膨胀的弹性体网络中通过形态调整能量耗散来对抗疲劳和断裂
基本信息
- 批准号:1808824
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYSwollen elastomer networks are polymeric materials that have the potential to play key roles in advancing of a number of health, energy, and environmental applications. These include biological soft-tissue replacement materials such as those found in the meniscus of the knee or the intervertebral disc of the spine, separation membranes for selective removal of chemical or biological contaminants, durable and rapid ion-transport membranes for battery technology, and materials designed to provide long-term impact protection (military, athletics) while retaining high elastic flexibility. Reduction to practice, however, has been plagued by materials with limited ability to meet the mechanical demands required of such applications, being subject to rapid decay in elasticity and susceptibility to failure by fracture. This project is focused on using a new paradigm in swollen elastomer network design to create mechanically robust polymers capable of sustaining repetitive stress dissipation without fatigue while suppressing susceptibility to fracture and failure needed to ensure long-term performance. The scientific advancement efforts in the project will be integrated with interdisciplinary education of students. It will also be accompanied by development of workshops aimed at building collaborations among top soft-matter synthesis and mechanics groups around the world, in an effort to push the frontiers of science, explore new ideas, and accelerate the untapped potential of these unique polymeric materials. The workshops importantly will provide a forum to encourage talented, yet underrepresented young researchers, and provide them access to and mentorship from leading materials researchers in the world.PART 2: TECHNICAL SUMMARYCreative efforts in polymer network design over the last decade have led to numerous impactful improvements in hydrogel mechanics. Notable examples include both highly elastic hydrogel networks in which fatigue is minimal but very little energy is dissipated, and highly dissipative hydrogel networks in which toughness is maximized but fatigue is rapid and recovery is subject to long recovery times (minutes to days). Effective integration of both dissipative capabilities and efficient elastic recovery, however, appears limited using current design strategies. The principal objective of this proposal is to demonstrate the ability of junction point morphology (nanostructure) and strand-level organizational control to maximize non-plastic energy dissipation, recovery rate, and fatigue resistance simultaneously in swollen polymer networks. The central hypothesis of the proposed research is that synthetic integration of non-bond rupturing dissipative interactions into every molecular strand of the network, combined with implicit coupling of the dissipation mechanism to its own driving force for elastic recovery, will add substantial dissipative capability without sacrificing the rapid elastic recovery or the exceptional fatigue resistance. The project involves the synthetic development of uniquely designed ABC and ABCBA block copolymers which upon heating self-assemble into highly efficient network structures based on core-shell sphere morphologies. The objectives are to explore the ability of the B block domain size and degree of hydrophobicity to successfully tune the magnitude of dissipated energy (e.g., through measurement of fracture toughness) and understand its dependence on strain and strain rate. If successful, this project will transform our access to hydrogel materials that exhibit both fatigue resistance and toughness (bulk and fracture), at rates of recovery far exceeding the most advanced hydrogel systems developed to date.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第 1 部分:非技术摘要溶胀弹性体网络是一种聚合物材料,有可能在推动许多健康、能源和环境应用方面发挥关键作用。其中包括生物软组织替代材料,例如在膝盖半月板或脊柱椎间盘中发现的材料、用于选择性去除化学或生物污染物的分离膜、用于电池技术的耐用且快速的离子传输膜以及材料旨在提供长期冲击保护(军事、田径),同时保持高弹性灵活性。 然而,在实际应用中,材料满足此类应用所需的机械要求的能力有限,并且弹性迅速衰减,并且容易因断裂而失效,这一直困扰着材料。该项目的重点是在膨胀弹性体网络设计中使用新的范例来创建机械坚固的聚合物,能够维持重复的应力消散而不会疲劳,同时抑制确保长期性能所需的断裂和失效的敏感性。 该项目的科学进步工作将与学生的跨学科教育相结合。 它还将同时举办研讨会,旨在建立世界各地顶级软物质合成和力学团体之间的合作,努力推动科学前沿,探索新想法,并加速这些独特聚合物材料的未开发潜力。重要的是,这些研讨会将提供一个论坛来鼓励有才华但代表性不足的年轻研究人员,并为他们提供接触世界领先材料研究人员的机会和指导。 第 2 部分:技术摘要过去十年在聚合物网络设计方面的创造性努力带来了许多有影响力的成果水凝胶力学的改进。值得注意的例子包括高弹性水凝胶网络,其中疲劳最小,但能量耗散很少;高耗散水凝胶网络,其中韧性最大化,但疲劳迅速且恢复时间较长(几分钟到几天)。然而,使用当前的设计策略,耗散能力和有效弹性恢复的有效集成似乎受到限制。该提案的主要目标是证明连接点形态(纳米结构)和股线级组织控制的能力,以在溶胀聚合物网络中同时最大化非塑性能量耗散、恢复率和抗疲劳性。该研究的中心假设是,将非键断裂耗散相互作用综合集成到网络的每个分子链中,再加上耗散机制与其自身弹性恢复驱动力的隐式耦合,将在不牺牲耗散能力的情况下增加大量耗散能力。快速的弹性恢复或出色的抗疲劳性。该项目涉及独特设计的 ABC 和 ABCBA 嵌段共聚物的合成开发,这些共聚物在加热时会自组装成基于核壳球形态的高效网络结构。目的是探索 B 嵌段域尺寸和疏水性程度成功调节耗散能量大小(例如,通过测量断裂韧性)的能力,并了解其对应变和应变率的依赖性。如果成功,该项目将改变我们对具有抗疲劳性和韧性(体积和断裂)的水凝胶材料的获取方式,其恢复率远远超过迄今为止开发的最先进的水凝胶系统。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-assembly of highly asymmetric, poly(ionic liquid)-rich diblock copolymers and the effects of simple structural modification on phase behaviour
- DOI:10.1039/c8py01414k
- 发表时间:2019-02-14
- 期刊:
- 影响因子:4.6
- 作者:May, Alyssa W.;Shi, Zhangxing;Bailey, Travis S.
- 通讯作者:Bailey, Travis S.
Melt-Fabricated Photoreactive Block Copolymer Micelles as Building Blocks for Tunable Elastomeric Hydrogels
- DOI:10.1021/acsapm.0c00108
- 发表时间:2020-09
- 期刊:
- 影响因子:8.2
- 作者:Nabila A. Huq;René P. M. Lafleur;Travis S. Bailey
- 通讯作者:Nabila A. Huq;René P. M. Lafleur;Travis S. Bailey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Travis Bailey其他文献
Travis Bailey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Travis Bailey', 18)}}的其他基金
I-Corps: Translation Potential of an Elastomeric Low-Friction Fluoropolymer Alternative for the Medical Device Industry
I-Corps:医疗器械行业弹性体低摩擦含氟聚合物替代品的转化潜力
- 批准号:
2406968 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
MRI: Acquisition of an Open Access Shared-Use MALDI-TOF/TOF Mass Spectrometer
MRI:购买开放共享的 MALDI-TOF/TOF 质谱仪
- 批准号:
2117934 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Routes to UV Activated Fouling Reversal and Molecular Weight Cutoff Control in Tethered Micelle Ultrafiltration Membrane Assemblies
系留胶束超滤膜组件中紫外线激活污垢逆转和分子量截留控制的途径
- 批准号:
1160026 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
MRI: Acquisition of Integrated Small and Wide Angle X-ray Scattering Instrumentation for the Rocky Mountain Region
MRI:为落基山脉地区采购集成小角度和广角 X 射线散射仪器
- 批准号:
0821799 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Magnetic Field Directed Self-Assembly of Conjugated Rod-Coil Block Copolymers
共轭棒-线圈嵌段共聚物的磁场定向自组装
- 批准号:
0730062 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Integration of Sophisticated Stimuli-Response Capabilities into Highly-Distensible Nanostructured Hydrogels
职业:将复杂的刺激响应能力集成到高可扩展的纳米结构水凝胶中
- 批准号:
0645781 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
机器学习和细观力学辅助热再生沥青混合料断裂与疲劳协同优化设计研究
- 批准号:52308443
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水凝胶疲劳断裂的应变率依赖性研究
- 批准号:12302212
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
镍基高温合金蠕变-疲劳多尺度断裂行为及损伤容限评定方法研究
- 批准号:52305152
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高应力水平循环荷载下硬岩低周疲劳断裂机理多尺度研究
- 批准号:52304077
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
混凝土疲劳断裂损伤力学模型
- 批准号:52378216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
How bisphosphonates affect bone matrix and remodeling: implications for atypical femoral fractures
双磷酸盐如何影响骨基质和重塑:对非典型股骨骨折的影响
- 批准号:
10586949 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Ultrafast sintering of dental zirconia: composition-processing-property relationships with high-throughput fail-fast screening
牙科氧化锆的超快烧结:成分-加工-性能关系与高通量快速失败筛选
- 批准号:
10792738 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Development of a Piezoelectric Intramedullary Nail for Enhanced Fracture Healing
开发用于增强骨折愈合的压电髓内钉
- 批准号:
10759862 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Novel Bioresorbable Vascular Scaffolds with Uniform Biodegradation
具有均匀生物降解性的新型生物可吸收血管支架
- 批准号:
10930188 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Quantifying the relationship between intracortical remodeling, microdamage, and bone quality in a novel in vivo loading model
在新型体内负荷模型中量化皮质内重塑、微损伤和骨质量之间的关系
- 批准号:
478357 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Operating Grants