Multiscale Total Variation Methods for Integral Equation Models in Image Processing

图像处理中积分方程模型的多尺度全变分法

基本信息

  • 批准号:
    0712827
  • 负责人:
  • 金额:
    $ 35.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-15 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

Models currently used in image processing are discrete. They are piecewise constant approximations of the true models - integral equation models. The discrete models impose bottleneck model errors which cannot be compensated from the numerical methods developed based upon them. To overcome this drawback, the PIs propose to directly use the integral equation models for image processing. The integral equation models will offer us much greater flexibility for the in-depth analysis of the corresponding images. An ideal method for image processing should be sensitive to geometric features of images and computationally efficient. Presently, the total variation method and the multiscale method are two main mathematical approaches for image processing. They are complementary to each other in their strength and weakness. The total variation method is sensitive to geometric features of images but it is computationally inefficient. The standard multiscale method is convenient for computation due to its multiscale structure but it is not very sensitive to the geometric features of images. Aiming at designing computationally efficient algorithms that are sensitive to geometric features of images, the PIs propose to develop multiscale total variation methods which combine the strengths from both of these two methods. The PIs study the following four mathematical problems related to image processing: (1) Multiscale approximation of images based on integral equation models; (2) Multiscale total variation regularization; (3) Missing data recovery with redundant systems; and (4) Design of application-driven wavelet and framelet filter banks. Image processing arises in a variety of scientific, medical and engineering applications. Specifically, applications in medical sciences and technologies range from computer tomography to diagnoses of diseases, applications in environmental sciences include natural resources and pollution control via satellite imaging, applications in art sciences have vision analysis and digital restorations of cracked ancient paintings in digitized fine art museums and applications in security identification include weapon, fingerprints and face identifications. In these applications, a key issue is restorating images from available data. This is an ill-posed problem. Solving this problem needs advanced mathematical models and efficient computational algorithms. The main objective of this proposal directly addresses this issue by proposing multiscale total variation methods for integral equation models in image processing. The projects in the proposal will enhance the integration of high level pure mathematics with the contemporary digital and computer technology. These projects will train graduate studetns in this important area to prepare them to face the mathematical and computational challenge in future scientifical and technological development. Moreover, th PIs will develop a multidisciplinary course for upper level undergraduate students based on research results of these projects.
图像处理中当前使用的模型是离散的。它们是真实模型的分段恒定近似值 - 积分方程模型。离散模型施加了瓶颈模型误差,这些误差无法从基于它们开发的数值方法中得到补偿。为了克服这一缺点,PI提议直接使用用于图像处理的积分方程模型。积分方程模型将为我们提供更大的灵活性,以对相应图像进行深入分析。图像处理的理想方法应该对图像的几何特征和计算效率敏感。目前,总变异方法和多尺度方法是图像处理的两种主要数学方法。他们的力量和劣势是彼此互补的。总变化方法对图像的几何特征敏感,但在计算上效率低下。由于其多尺度结构,标准的多尺度方法对于计算很方便,但对图像的几何特征并不十分敏感。旨在设计对图像几何特征敏感的计算有效算法,PIS提议开发多尺度的总变异方法,这些方法结合了这两种方法的强度。 PIS研究以下与图像处理有关的四个数学问题:(1)基于积分方程模型的图像的多尺度近似; (2)多尺度的总变化正规化; (3)缺少冗余系统的数据恢复; (4)设计由应用程序驱动的小波和帧过滤器库设计。 图像处理发生在各种科学,医学和工程应用中。具体而言,医学和技术的应用从计算机层析成像到诊断疾病,环境科学的应用包括自然资源和通过卫星成像进行污染控制,艺术科学中的应用具有视觉分析,并且在数字化美术博物馆中进行破解的古代绘画的数字修复以及在安全性美术博物馆中的应用,以及在安全标识中包括武器,武器,构成武器,构成武器,识别武器,并识别武器。 在这些应用程序中,关键问题是从可用数据中恢复图像。这是一个不适的问题。解决此问题需要高级数学模型和有效的计算算法。该提案的主要目的直接通过提出图像处理中积分方程模型的多尺度总变化方法来直接解决此问题。提案中的项目将增强高水平纯数学与当代数字和计算机技术的整合。这些项目将在这一重要领域培训研究生锻炼,以便他们准备面对未来科学和技术发展中的数学和计算挑战。此外,根据这些项目的研究结果,PIS将为上层本科生开发一门多学科课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuesheng Xu其他文献

Fixed-point proximity algorithms solving an incomplete Fourier transform model for seismic wavefield modeling
定点邻近算法求解地震波场建模的不完全傅立叶变换模型
  • DOI:
    10.1016/j.cam.2020.113208
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuesheng Xu;Lixin Shen;Tingting Wu
  • 通讯作者:
    Tingting Wu
A deblurring/denoising corrected scintigraphic planar image reconstruction model for targeted alpha therapy
用于靶向α治疗的去模糊/去噪校正闪烁扫描平面图像重建模型
Constrained best approximation in Hilbert space III. Applications ton-convex functions
希尔伯特空间 III 中的约束最佳近似。
  • DOI:
    10.1007/bf02433049
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    F. Deutsch;V. Ubhaya;J. Ward;Yuesheng Xu
  • 通讯作者:
    Yuesheng Xu
On computing with the Hilbert spline transform
关于希尔伯特样条变换的计算
Multiplicative Noise Removal: Nonlocal Low-Rank Model and Its Proximal Alternating Reweighted Minimization Algorithm
乘性噪声消除:非局部低秩模型及其近端交替重加权最小化算法
  • DOI:
    10.1137/20m1313167
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoxia Liu;Yuesheng Xu;Jian Lu;Lixin Shen;Chen Xu
  • 通讯作者:
    Chen Xu

Yuesheng Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuesheng Xu', 18)}}的其他基金

Collaborative Research: Sparse Optimization for Machine Learning and Image/Signal Processing
协作研究:机器学习和图像/信号处理的稀疏优化
  • 批准号:
    2208386
  • 财政年份:
    2022
  • 资助金额:
    $ 35.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Sparse Optimization in Large Scale Data Processing: A Multiscale Proximity Approach
协作研究:大规模数据处理中的稀疏优化:多尺度邻近方法
  • 批准号:
    1912958
  • 财政年份:
    2019
  • 资助金额:
    $ 35.89万
  • 项目类别:
    Standard Grant
International Conference on Mathematics of Data Science
国际数据科学数学会议
  • 批准号:
    1839457
  • 财政年份:
    2018
  • 资助金额:
    $ 35.89万
  • 项目类别:
    Standard Grant
Collaborative Research: An Efficient Programming Model for HPC Applications on Next-Generation High-end Parallel Machines
协作研究:下一代高端并行机上 HPC 应用的高效编程模型
  • 批准号:
    0833152
  • 财政年份:
    2008
  • 资助金额:
    $ 35.89万
  • 项目类别:
    Standard Grant
ITR: Estimation, Approximation and Computation in Learning Theory
ITR:学习理论中的估计、近似和计算
  • 批准号:
    0407476
  • 财政年份:
    2003
  • 资助金额:
    $ 35.89万
  • 项目类别:
    Standard Grant
ITR: Estimation, Approximation and Computation in Learning Theory
ITR:学习理论中的估计、近似和计算
  • 批准号:
    0312113
  • 财政年份:
    2003
  • 资助金额:
    $ 35.89万
  • 项目类别:
    Standard Grant
Adaptive Wavelet Methods for Boundary Integral Equations
边界积分方程的自适应小波方法
  • 批准号:
    0296024
  • 财政年份:
    2001
  • 资助金额:
    $ 35.89万
  • 项目类别:
    Standard Grant
Adaptive Wavelet Methods for Boundary Integral Equations
边界积分方程的自适应小波方法
  • 批准号:
    9973427
  • 财政年份:
    1999
  • 资助金额:
    $ 35.89万
  • 项目类别:
    Standard Grant
U.S.-China Cooperative Research: Symposium on Computational Mathematics, Guangzhou, China, August 1997
美中合作研究:计算数学研讨会,中国广州,1997 年 8 月
  • 批准号:
    9604916
  • 财政年份:
    1997
  • 资助金额:
    $ 35.89万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Construction of Wavelets on Finite Domans and Applications to Boundary Integral Equations
数学科学:有限域上的小波构造及其在边界积分方程中的应用
  • 批准号:
    9504780
  • 财政年份:
    1995
  • 资助金额:
    $ 35.89万
  • 项目类别:
    Standard Grant

相似国自然基金

害虫天敌拟环纹豹蛛全部乙酰胆碱酯酶的特征与生理功能
  • 批准号:
    31772185
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
荷马条鳅属鱼类的系统发育、生物地理及性状演化研究
  • 批准号:
    31401956
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
关于图像处理模型的目标函数构造及其数值方法研究
  • 批准号:
    11071228
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
海洋天然产物Amphidinolide G和H全合成研究
  • 批准号:
    20772148
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
地奥心血康中全部皂甙的合成和性质研究
  • 批准号:
    29802008
  • 批准年份:
    1998
  • 资助金额:
    11.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nonparametric Total Variation Regression for Multivariate Process Data
多元过程数据的非参数总变差回归
  • 批准号:
    2402544
  • 财政年份:
    2023
  • 资助金额:
    $ 35.89万
  • 项目类别:
    Standard Grant
Genetic and Immuno-inflammatory Drivers of Post-acute Pulmonary Sequelae of SARS-CoV-2
SARS-CoV-2 急性后肺部后遗症的遗传和免疫炎症驱动因素
  • 批准号:
    10587075
  • 财政年份:
    2023
  • 资助金额:
    $ 35.89万
  • 项目类别:
Nonparametric Total Variation Regression for Multivariate Process Data
多元过程数据的非参数总变差回归
  • 批准号:
    2210929
  • 财政年份:
    2022
  • 资助金额:
    $ 35.89万
  • 项目类别:
    Standard Grant
Variation in Home Opioid Consumption after Total Knee Replacement: Investigating the Role of Pain Sensitivity and Gene Expression
全膝关节置换术后家庭阿片类药物消耗量的变化:研究疼痛敏感性和基因表达的作用
  • 批准号:
    10507084
  • 财政年份:
    2022
  • 资助金额:
    $ 35.89万
  • 项目类别:
Variation in Home Opioid Consumption after Total Knee Replacement: Investigating the Role of Pain Sensitivity and Gene Expression
全膝关节置换术后家庭阿片类药物消耗量的变化:研究疼痛敏感性和基因表达的作用
  • 批准号:
    10686212
  • 财政年份:
    2022
  • 资助金额:
    $ 35.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了