Nonparametric Total Variation Regression for Multivariate Process Data
多元过程数据的非参数总变差回归
基本信息
- 批准号:2210929
- 负责人:
- 金额:$ 11.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Process data of interest frequently occur in engineering, manufacturing, commerce, environmental science and other arenas. For example, water or air contamination levels, configuration of a drilled metal part, chemical composition of a pharmaceutical product, and operational characteristics of computer network, all changing over time, are routinely monitored in real time. Upsets or shifts away from a stable, consistent flow of process data are indicative of special cause intrusion(s). These special causes can be significantly detrimental to decision making and process understanding in the context of a particular application. Development of reference-free statistical control charts for monitoring multivariate processes for both gradual and abrupt changes in the mean vector has been significantly hampered by a lack of suitable nonparametric regression methodology. In response to this challenge, this project will address the acute need for nonparametric estimators for multivariate process data and will develop new reference-free methods for statistical process monitoring. The outcomes of this project will benefit society through enhanced statistical quality assurance in industrial manufacturing, business, commerce, healthcare, and other domains of societal importance. The results of this project will be implemented in a form of publicly available software. Furthermore, the project will involve multiple research training and career mentoring initiatives at various educational levels and will offer multiple opportunities for interdisciplinary training, with a particular focus on broadening participation in statistical sciences.The project will advance the frontiers of nonparametric multivariate regression by developing new theory and methodology of statistical process control for individuals multivariate process data. In the context of nonparametric estimation for independent sub-Gaussian processes, the goal is to investigate nonparametric total variation (TV) and taut string (TS) estimators for multivariate process data with piecewise smooth process mean, establish well-posedness for associated optimization problems, prove their equivalence, and investigate asymptotic consistency/convergence rates for TV/TS estimators in various practically relevant topologies. These theoretical results will be applied to develop computationally efficient algorithmic implementations of the TV/TS estimator, investigate convergence and complexity of these algorithms, and showcase their performance based on synthetic and real data. Subsequently, algorithmic implementations of the TV/TS estimator will be used to design a new class of reference-free statistical control charts for nonparametric monitoring of multivariate process mean and compare them to state-of-the-art competitors under a variety of practically relevant scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
感兴趣的过程数据经常发生在工程,制造,商业,环境科学和其他领域。例如,经常对水或空气污染水平,钻孔金属部分的配置,药品的化学成分以及计算机网络的运行特征,所有这些都会随着时间的推移而变化。兴奋或偏离稳定,一致的过程数据流的转移表明特殊原因入侵。 这些特殊原因可能对在特定应用程序的背景下对决策和处理理解有很大损害。由于缺乏合适的非参数回归方法,开发用于监测平均矢量逐渐变化和突然变化的多元过程的无参考统计控制图。为了应对这一挑战,该项目将解决多元过程数据非参数估计器的急需需求,并将开发用于统计过程监视的新的无参考方法。该项目的结果将通过提高工业制造,商业,商业,医疗保健和其他社会重要性领域的统计质量保证来使社会受益。该项目的结果将以公开可用的软件形式实施。此外,该项目将在各种教育水平上涉及多个研究培训和职业指导计划,并为跨学科培训提供多个机会,特别着重于扩大参与统计科学的参与。该项目将通过开发新的统计过程和跨越统计过程的方法来促进非参数多元学院回归的领域。 In the context of nonparametric estimation for independent sub-Gaussian processes, the goal is to investigate nonparametric total variation (TV) and taut string (TS) estimators for multivariate process data with piecewise smooth process mean, establish well-posedness for associated optimization problems, prove their equivalence, and investigate asymptotic consistency/convergence rates for TV/TS estimators in various practically relevant topologies.这些理论结果将用于开发电视/TS估计器的计算有效算法实现,研究这些算法的收敛性和复杂性,并根据合成和真实数据来展示其性能。 Subsequently, algorithmic implementations of the TV/TS estimator will be used to design a new class of reference-free statistical control charts for nonparametric monitoring of multivariate process mean and compare them to state-of-the-art competitors under a variety of practically relevant scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review 标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A hybrid method for density power divergence minimization with application to robust univariate location and scale estimation
密度功率散度最小化的混合方法,应用于稳健的单变量位置和尺度估计
- DOI:10.1080/03610926.2023.2209347
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Anum, Andrews T.;Pokojovy, Michael
- 通讯作者:Pokojovy, Michael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Pokojovy其他文献
On a Parabolic-Hyperbolic Filter for Multicolor Image Noise Reduction
用于多色图像降噪的抛物双曲滤波器
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
V. Maltsev;Michael Pokojovy - 通讯作者:
Michael Pokojovy
Small Firm Electricity Demand in Las Cruces, New Mexico, USA
美国新墨西哥州拉斯克鲁塞斯的小企业电力需求
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Thomas M. Fullerton Jr.;Daniel J. Pastor;Michael Pokojovy;Andrew T. Yurachek - 通讯作者:
Andrew T. Yurachek
Strong and Mild Extrapolated L2-Solutions to the Heat Equation with Constant Delay
常时滞热方程的强弱外推L2解
- DOI:
10.1137/130937111 - 发表时间:
2014 - 期刊:
- 影响因子:2
- 作者:
D. Khusainov;Michael Pokojovy;R. Racke - 通讯作者:
R. Racke
A Fast Initial Response Approach to Sequential Financial Surveillance
顺序财务监控的快速初始响应方法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Michael Pokojovy;A. Anum - 通讯作者:
A. Anum
Zur Theorie Wärmeleitender Reissner-Mindlin-Platten
Zur Theorie Wärmeleitender Reissner-Mindlin-Platten
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Michael Pokojovy - 通讯作者:
Michael Pokojovy
Michael Pokojovy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Pokojovy', 18)}}的其他基金
Nonparametric Total Variation Regression for Multivariate Process Data
多元过程数据的非参数总变差回归
- 批准号:
2402544 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
相似国自然基金
害虫天敌拟环纹豹蛛全部乙酰胆碱酯酶的特征与生理功能
- 批准号:31772185
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
荷马条鳅属鱼类的系统发育、生物地理及性状演化研究
- 批准号:31401956
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
关于图像处理模型的目标函数构造及其数值方法研究
- 批准号:11071228
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
海洋天然产物Amphidinolide G和H全合成研究
- 批准号:20772148
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
地奥心血康中全部皂甙的合成和性质研究
- 批准号:29802008
- 批准年份:1998
- 资助金额:11.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Nonparametric Total Variation Regression for Multivariate Process Data
多元过程数据的非参数总变差回归
- 批准号:
2402544 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Genetic and Immuno-inflammatory Drivers of Post-acute Pulmonary Sequelae of SARS-CoV-2
SARS-CoV-2 急性后肺部后遗症的遗传和免疫炎症驱动因素
- 批准号:
10587075 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Variation in Home Opioid Consumption after Total Knee Replacement: Investigating the Role of Pain Sensitivity and Gene Expression
全膝关节置换术后家庭阿片类药物消耗量的变化:研究疼痛敏感性和基因表达的作用
- 批准号:
10507084 - 财政年份:2022
- 资助金额:
$ 11.99万 - 项目类别:
Variation in Home Opioid Consumption after Total Knee Replacement: Investigating the Role of Pain Sensitivity and Gene Expression
全膝关节置换术后家庭阿片类药物消耗量的变化:研究疼痛敏感性和基因表达的作用
- 批准号:
10686212 - 财政年份:2022
- 资助金额:
$ 11.99万 - 项目类别:
Mechanisms of chromosome motility during mammalian meiosis
哺乳动物减数分裂过程中染色体运动的机制
- 批准号:
10672204 - 财政年份:2022
- 资助金额:
$ 11.99万 - 项目类别: